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I thought that instead of the great number of precepts of which logic is com-

posed, I would have enough with the four following ones, provided that I made

a firm and unalterable resolution not to violate them even in a single instance.

The first rule was never to accept anything as true unless I recognized it to

be certainly and evidently such . . . . The second was to divide each of the dif-

ficulties which I encountered into as many parts as possible, and as might be

required for an easier solution. (Descartes)

We survey splitting methods for the numerical integration of ordinary differ-
ential equations (ODEs). Splitting methods arise when a vector field can be
split into a sum of two or more parts that are each simpler to integrate than
the original (in a sense to be made precise). One of the main applications of
splitting methods is in geometric integration, that is, the integration of vector
fields that possess a certain geometric property (e.g., being Hamiltonian, or
divergence-free, or possessing a symmetry or first integral) that one wants
to preserve. We first survey the classification of geometric properties of dy-
namical systems, before considering the theory and applications of splitting
in each case. Once a splitting is constructed, the pieces are composed to form
the integrator; we discuss the theory of such ‘composition methods’ and sum-
marize the best currently known methods. Finally, we survey applications
from celestial mechanics, quantum mechanics, accelerator physics, molecular
dynamics, and fluid dynamics, and examples from dynamical systems, biology
and reaction–diffusion systems.
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1. Introduction

1.1. What is splitting?

Our topic is a class of methods for the time integration of ODEs and PDEs.
With phase space M , differential equation ẋ = X(x), x ∈ M , and X a
vector field on M , splitting methods involve three equally important steps:

(1) choosing a set of vector fields Xi such that X =
∑
Xi;

(2) integrating either exactly or approximately each Xi; and

(3) combining these solutions to yield an integrator for X.

For example, writing the flow (i.e., the exact solution) of the ODE ẋ = X
as x(t) = exp(tX)(x(0)), we might use the composition method

ϕ(τ) = exp(τX1) exp(τX2) . . . exp(τXn), (1.1)
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which is first-order accurate, that is,

ϕ(τ) = exp
(
τ
∑

Xi

)
+ O(τ2).

Here τ is the time step. In all cases the pieces Xi should be simpler than
the original vector field X, which can occur in two ways.

(1) The Xi are of a simpler type than X. For example, the Navier–Stokes
equations contain advection, diffusion, and pressure (constraint) terms,
each with distinct characteristic properties and appropriate numerical
methods. In an ODE of the form Hamiltonian plus small dissipa-
tion, the Hamiltonian piece has a simpler structure than the combined
system.

(2) The Xi are of the same type as X, but are easier to treat numeric-
ally. Examples are dimensional splitting for the multidimensional heat
equation, Hamiltonian splitting for Hamiltonian ODEs, and the split-
step-Fourier method for the Schrödinger equation iψ̇ = ψxx + V (x)ψ
– each piece is linear and Hamiltonian, but the first term can be in-
tegrated more quickly (in a Fourier basis, using the FFT) than the
combined system.

Splitting methods were originally developed for the traditional numerical
motivations of speed, accuracy, and stability. However, it is now clear that
they are a very general and flexible way of constructing geometric integrators

(McLachlan and Quispel 2001a, Budd and Iserles 1999, Budd and Piggott
2002, Hairer, Lubich and Wanner 2002) which preserve structural features of
the flow of X, conferring qualitative superiority on the integrator, especially
when integrating for long times. Examples of such features are symplecticity,
volume preservation, integrals, symmetries, and many more. This has led
to them being the method of choice, for instance, in celestial mechanics,
molecular dynamics, and accelerator physics.

In this review we only consider initial value problems. In geometric in-
tegration, it is important to preserve the phase space of the system, so we
only consider one-step methods.

1.2. Four examples

We introduce splitting methods with four examples.

Example 1. (Leapfrog) The leapfrog method is the standard example
which has motivated much of the work in splitting methods and in geometric
integration. Let the phase space be M = R

2n with coordinates (q, p) and
consider a Hamiltonian system with energy H = T + V where T = 1

2‖p‖2

is the kinetic energy and V = V (q) is the potential energy. Hamilton’s
equations for H, namely ẋ = XH = XT + XV , are a sum of two easily



Splitting methods 345

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

q2

p2

Figure 1.1. The q1 = 0 Poincaré section (q2, p2) of the Hénon–Heiles
system, calculated by leapfrog, a second-order symplectic splitting
method, with time step τ = 0.25
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Figure 1.2. Energy error of a chaotic orbit in an integration of the
Hénon–Heiles system by leapfrog at τ = 0.25
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solvable Hamiltonian equations:

XT : q̇ = p, ṗ = 0,

and
XV : q̇ = 0, ṗ = −∇V (q).

The flow of XT is

q(t) = q(0) + tp(0), p(t) = p(0)

and the flow of XV is

q(t) = q(0), p(t) = p(0) − t∇V (q(0)).

Composing the time t = τ flow of XV (from initial condition (qn, pn)) fol-
lowed by the time τ flow of XT , as in (1.1), gives the method

pn+1 = pn − τ∇V (qn),

qn+1 = qn + τpn+1.
(1.2)

Because it is the composition of the flows of two Hamiltonian systems, it is a
symplectic integrator. It is a first-order method, sometimes called symplectic
Euler. Including the previous step, namely

qn = qn−1 + τpn,

and eliminating the pn gives

qn+1 − 2qn + qn−1 = −τ2∇V (qn), (1.3)

which is leapfrog in a more familiar form, the form in which it was first
derived as a discretization of q̈ = −∇V (q). (Note that this shows that the
method is actually second-order in the position variables q.) In Figure 1.1
we show a Poincaré section for the Hénon–Heiles system which has n = 2
and potential

V (q1, q2) = 1
2(q21 + q22) + q21q2 − 1

3q
3
2.

The energy error is shown in Figure 1.2: it is not zero, but appears to
be bounded. This is in fact typical for symplectic integrators on bounded
energy surfaces and moderate time steps.

Example 2. (The rigid body) The Euler equations for the motion of a
free rigid body in R

3 are
ẋ1 = a1x2x3,

ẋ2 = a2x3x1,

ẋ3 = a3x1x2,

where a1 = 1/I2 − 1/I3, a2 = 1/I3 − 1/I1, a3 = 1/I1 − 1/I2, the Ij are
the moments of inertia, and xi is the angular momentum of the body in
coordinates fixed in the principal axes of the body (Marsden and Ratiu
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Figure 1.3. The flow of the triaxial rigid body with I1 = 1, I2 = 2, I3 = 3
calculated with the second-order explicit splitting method (1.4) and a time
step of 0.05. The maximum relative energy error for all initial conditions is
0.002, or about τ2

1999). These equations have a lot of geometric structure. They form a
Lie–Poisson system of the form

ẋ = J(x)∇H(x),

where

J(x) =




0 x3 −x2

−x3 0 x1

x2 −x1 0




and H =
∑3

i=1Hi, Hi = x2
i /2Ii. As in the previous example, splitting the

Hamiltonian represents the system as a sum of three Hamiltonian vector
fields, each of which is integrable. Furthermore, each preserves the total
angular momentum

∑
x2
i . For example, the first vector field is XH1

:=
J∇H1:

ẋ1 = 0,

ẋ2 = −x1x3/I1,

ẋ3 = x1x2/I1,
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with solution

x(t) =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


x(0),

where

θ = tx1/I1.

An explicit geometric integrator is therefore given by

exp

(
1

2
τXH1

)
exp

(
1

2
τXH2

)
exp(τXH3

) exp

(
1

2
τXH2

)
exp

(
1

2
τXH1

)
,

(1.4)
a sequence of 5 planar rotations. For speed, it is possible to use the ap-
proximations cos θ ≈ (1− θ2/4)/(1 + θ2/4), sin θ ≈ θ/(1 + θ2/4), equivalent
to rotating by a slightly different angle. This integrator preserves the total
angular momentum

∑
x2
i and, on each such angular momentum sphere, pre-

serves the symplectic structure which in this case is Euclidean area. This is
undoubtedly the best way to integrate the rigid body for most applications,
for example in molecular dynamics simulations. (It does not preserve energy,
but in applications, systems of rigid bodies are coupled together, and the
energy of each body is not individually preserved anyway.) The computed
phase portrait for a triaxial rigid body with I1 = 1, I2 = 2, I3 = 3 is shown
in Figure 1.3.

Example 3. (The Duffing oscillator) Geometric integrators construc-
ted from splitting are also useful for dissipative systems. We consider the
Duffing oscillator (Guckenheimer and Holmes 1983), a forced planar system

X : q̇ = p, ṗ = q − q3 + γ cos t− δp. (1.5)

As shown in Section 3.6, this system is ‘conformal Hamiltonian’, that is,
the linear dissipation −δp causes the symplectic structure to contract at a
constant rate. Over one period of the forcing, the symplectic structure is
scaled by e−2πδ. From (1.5) it can be seen that the trace of the Jacobian of
X is −δ, so the sum of the eigenvalues of any fixed point, and more generally
the sum of the Lyapunov exponents of any orbit obey σ1 + σ2 = −δ.

It is possible to split X in various ways. To illustrate the standard treat-
ment of nonautonomous terms, let t be a new variable in the extended phase
space (q, p, t), and let

X = X1 +X2,
X1 : q̇ = p, ṗ = −δp, ṫ = 1,
X2 : q̇ = 0, ṗ = q − q3 + γ cos t, ṫ = 0.
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Figure 1.4. Convergence of estimates of the two Lyapunov exponents of
the Duffing oscillator for δ = −0.25, γ = 0.3. The geometric (splitting)
method is the solid line, which preserves the sum σ1 + σ2; the nongeo-
metric (Taylor series) method is the dotted line

Then the flows of these vector fields are given by

exp(τX1) : (q, p, t) 7→
(
q +

1 − e−δτ

δ
p, e−δτp, t+ τ

)

exp(τX2) : (q, p, t) 7→ (q, p+ τ(q − q3 + γ cos t), t)

and a convenient second-order explicit geometric integrator is given by

exp

(
1

2
τX1

)
exp(τX2) exp

(
1

2
τX1

)
.

Notice that the time-dependent force is evaluated here half-way through a
time step.

In Figure 1.4 we show the results of a calculation of the Lyapunov expo-
nents of a strange attractor of the Duffing oscillator by two methods. The
geometric splitting method, above, provides estimates which obey σ1 +σ2 =
−δ for any finite time interval. The non-geometric method (here, a Taylor
series method) does not, and although it has similar local truncation er-
rors to the geometric integrator, has much larger errors in the Lyapunov
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exponents. (It is not clear whether the convergence of the exponents as
t→ ∞ is affected, however.) The exponents are calculated with the discrete
method, that is, by calculating the exponents of the integrator itself (Dieci,
Russell and van Vleck 1997, McLachlan and Quispel 2001b).

We have seen that, in splitting, each piece should have the same (or more)
properties as the original system so that they are not destroyed by the integ-
rator. When several properties are present, this is not so easy. The following
example preserves phase space volume and has 8 discrete symmetries and 8
discrete reversing symmetries. (Recall that a symmetry of a vector field X
is a map S : M →M that leaves it invariant, i.e., TS.X = X ◦S, where TS
is the tangent map (Jacobian derivative) of the map S, and a reversing sym-
metry R : M →M is a map that reverses its direction, i.e., TR.X = −X◦R.
The set of all symmetries and reversing symmetries of a given X forms a
group.) One can find a splitting that preserves all 16 (reversing) symmetries,
but one of the pieces cannot be integrated in terms of elementary functions;
fortunately its flow can be approximated while preserving all the properties.

Example 4. (The ABC flow) The ABC flow has been widely studied as
a model volume-preserving three-dimensional flow. It has phase space T

3,
the 3-torus:

ẋ = A sin z + C cos y,

ẏ = B sinx+A cos z,

ż = C sin y +B cosx.

(1.6)

We consider the case when two of the parameters are equal, say B = A.
The system then has a reversing symmetry group with 16 elements, and is
divergence-free. The reversing symmetry group is generated by the three
elements

R1 : (x, y, z) 7→ (x, π − y,−z),
R2 : (x, y, z) 7→ (−x, y, π − z),

R3 : (x, y, z) 7→ (3π
2 + z, π2 + y, 3π

2 − x).

(1.7)

A splitting that preserves these properties is X = X1 +X2 with

X1 : ẋ = A sin z + C cos y, ẏ = 0, ż = C sin y +A cosx,
X2 : ẋ = 0, ẏ = A sinx+A cos z, ż = 0.

(1.8)
Note that X2 is explicitly integrable but X1, a 2-dimensional Hamiltonian
system, is not. However, the midpoint rule applied to X1 preserves all
the appropriate properties, namely volume and the (reversing) symmetries.
Finally, volume and symmetries, being group properties, are preserved by
any composition, but reversing symmetries are only preserved by so-called
‘symmetric’ compositions. A second-order, volume-preserving, reversing
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Figure 1.5. The section y = 0 of the ABC flow (1.6) with A = B = 1,
C = 0.75, calculated with the symmetry- and volume-preserving
splitting method (1.9) at time step τ = 0.25

symmetry group-preserving integrator is therefore

ϕ2(τ/2)ϕ1(τ)ϕ2(τ/2), (1.9)

where ϕ2 = exp(τX2), and ϕ1 is the implicit midpoint rule applied to X1.
A sample phase portrait is shown in Figure 1.5. (Applied directly to X, a
volume-preserving integrator would not in general preserve the symmetries,
and a symmetry-preserving integrator, such as the midpoint rule, would not
preserve volume.)

1.3. Historical development

The historical development of splitting methods is difficult to untangle, be-
cause it often proceeded independently in different applied fields. Thus we
have dimensional splitting for parabolic PDEs, fractional-step and operator

splitting methods for the Navier–Stokes equations and reaction–diffusion
systems, split-step methods in optics and acoustics, split-Hamiltonian meth-
ods in chemical physics, the mapping method in celestial mechanics, and
[Lie–]Trotter [–Kato] formulae in quantum statistical mechanics (in which



352 R. I. McLachlan and G. R. W. Quispel

leapfrog is called the ‘primitive’ method). Intermittent cross-fertilization
has kept all these fields humming!

Splitting essentially began with the product formula of Trotter (1959),

lim
n→∞

(e−tA/ne−tB/n)n = e−t(A+B), (1.10)

where A and B are self-adjoint linear operators on a Banach space, A + B
is essentially self-adjoint, and either t ∈ iR or t ∈ R, t ≥ 0 and A and
B are bounded above. This includes the cases, for example, where A and
B are heat operators, as in dimensional splitting for the heat equation,
introduced by Bagrinovskii and Godunov (1957) and by Strang (1963).
(Godunov (1999) has explained why he developed this scheme, and why
he then dropped it.) For hyperbolic equations key early references are Tap-
pert (1974) and Hardin and Tappert (1973), who introduced the split-step
method for the nonlinear Schrödinger equation, the first example of what
is now known as a symplectic integrator for a PDE. (In this review we will
mostly be concerned with ordinary differential equations, but will briefly
survey these related fields in Section 5.)

On the ODE side, the fundamental example is the leapfrog or Verlet
method for the Hamiltonian ODE ẍ = f(x) = −∇V (x), namely

xn+1 − 2xn + xn−1 = τ2f(xn).

It is usually credited to Verlet (1967), who used it in a molecular dynamics
simulation of 864 particles for 1500 time steps interacting by a Lennard–
Jones potential

V (x) =
∑

i>j

(σ/‖xi − xj‖)12 − (σ/‖xi − xj‖)6 (1.11)

in a three-dimensional periodic box, obtaining excellent agreement with the
properties of argon. However, Levesque and Verlet (1993) cite a much
earlier use of leapfrog by the French astronomer Jean Baptiste Delambre
(De Lambre 1790). We have translated part of this paper in Appendix C,
and invite the reader to judge.1

Curiously enough, it was first discovered by Delambre’s colleague Lag-
range at almost exactly the same time that the flow of ẍ = −∇V (x) is
symplectic (Lagrange 1788). But we had to wait nearly two centuries to put
two and two together and appreciate that the leapfrog method is symplectic
(suitably interpreted in position-momentum variables). It is hard to say who
first realized this, as awareness of it seems to have spread rather slowly from
field to field. Devogelaere (1956) notes that the first-order method (1.2) is
known to be symplectic, and constructs a general second-order symplectic

1 The leapfrog method also appears as one of a class of methods introduced by Störmer
(1907), most of which are multistep, nonreversible and nonsymplectic; it appears that
leapfrog itself was never used by Störmer.
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method which reduces to leapfrog on ẍ = −∇V (x, t). This is presumably
the first written proof that leapfrog is symplectic, although it was never
published. In the physics community, a key step was the influential study of
the so-called ‘standard mappings’ of the form (1.2) undertaken by Chirikov
(1979), who credits the idea to an unpublished manuscript of Taylor (1968).
For example, this inspired Wisdom (1982) to create the first symplectic in-
tegrators for celestial mechanics. Ruth (1983) was able to state that the
symplecticity of the leapfrog method was already well known. This paper
(Ruth 1983) led to a flurry of publications on symplectic integration (see,
e.g., the historical introduction to Channell and Scovel (1990)), so that by
the early 1990s scientists in many applied fields knew, à la Molière, that
they had been doing symplectic integration for years without realizing it.

A second key step was the derivation of the leapfrog method as a compos-
ition of flows of elementary Hamiltonians, that is, as a splitting method. As
we have noted, splitting methods were already in widespread use by 1990
in numerical PDEs, quantum statistical mechanics, and celestial mechanics.
However, their systematic development by numerical analysts was triggered
by the work of Neri (1988) who applied the Baker–Campbell–Hausdorff for-
mula to derive composition methods of high order, inspiring the more sys-
tematic development by Yoshida (1990). An indication of the growth of
the field is given by the fact that Yoshida (1990) has in 10 years received
more than 300 citations, mostly for use in diverse applications. In a par-
allel development, Suzuki (1976) began studying variations of the Trotter
formula (1.10), a fourth-order method using derivatives, (4.12) below, was
discovered by Takahashi and Imada (1984), and the even-order compositions
were discovered by Suzuki (1990).

The third step was the realization that splitting and composition methods
could be used to construct integrators for groups other than the symplectic
group. This was emphasized by Forest and Ruth (1990), who mentioned
the example of O(3) for spin motion in an orbital ring, but was developed
for other infinite-dimensional groups by Feng (1992), who treated the sym-
plectic, volume-preserving, and contact groups on an equal footing. This
point of view was developed further in the context of Cartan’s classification
of infinite-dimensional transformation groups by the authors (McLachlan
and Quispel 2001b), so that it can be seen to include methods that preserve
integrals, symmetries, orbits of group actions, foliations, in fact a large part
of what is now known as ‘geometric integration’, a term coined by Sanz-
Serna (1997). The humble leapfrog has come a long way.

1.4. Survey of this paper

Splitting methods are important in many different areas of mathematics: for
instance, Hamiltonian systems, Poisson systems, systems with first integrals
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such as energy, momentum or angular momentum, systems with continuous
or discrete symmetries, and systems with time-reversal symmetries. Simil-
arly, splitting methods find application in many different areas of science:
for instance, molecular dynamics, hydrodynamics, quantum mechanics and
quantum statistical mechanics, celestial mechanics and accelerator physics.
Some readers may only be interested in how splitting methods work in one
of these areas of mathematics/science in particular. Those readers are ad-
vised to turn directly to the relevant subsection of Section 3 on splitting
and Section 5 on applications: see the table of contents. (Some additional
applications to Lotka–Volterra equations and similarity reductions of PDEs
are discussed in Section 3.14.)

For those readers with a broader interest in splitting methods we now
briefly survey the rest of this paper:

As was mentioned, splitting methods are particularly important in con-
structing geometric integrators for various classes of ODEs. Since a large
number of such classes has now been distinguished, it has become important
to classify the various ODEs and their corresponding integration methods.
This classification proceeds in two stages. At the first stage, ODEs are
grouped into 3 classes, depending on whether their flows form a group, a
semigroup or a symmetric space (for a definition see below). At the second
stage, each of these classes is subdivided further. These classifications (with
an emphasis on integrators that form groups, such as the symplectic group
and the volume-preserving group) are outlined in Section 2.

Returning to our definition of splitting methods given in the first sentence
of the Introduction, we see now that step (1), splitting X =

∑
Xi, makes

sense because so many of the interesting sets of vector fields on M form
linear spaces. (It even makes sense for vector fields whose flows lie in a
semigroup, which are still closed under positive linear combinations.) We
shall see that step (2), integrating theXi in the appropriate space, is possible
because each space of vector fields has a natural decomposition into much
simpler vector fields. For some sets of vector fields, splitting is a science:
the splitting can be constructed explicitly for all X. For others, it remains
an art: one can give some guidelines on how to find a suitable splitting, but
no general method is known. We survey these splittings in Section 3.

Step (3), combining the (approximate) flows of the pieces, forms the sub-
ject of composition methods and is addressed in Section 4. The group prop-
erty directly confers a major advantage on geometric integrators. Namely,
any composition of flows, even for negative time steps, lies in the group. As
we shall see, this is essential for attaining orders higher than 2. In contrast,
for general dissipative systems (e.g., those that contract volume (McLachlan
and Quispel 2000) or have a Lyapunov function), this is not possible: the
dynamics lie only in a semigroup, which is left by negative time steps.
This is related to one of the key reasons for the widespread use of splitting
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methods in applications: they are generally explicit (i.e., faster). Further,
while any composition of explicit maps is explicit, and hence suitable for re-
taining (semi)group properties, explicit flows have the advantage that their
inverse is also explicit. No other large class of methods has this property.
So, methods based on composition of explicitly integrable flows are uniquely
placed to provide geometric integrators. Many geometric integrators exist
which are not based on splitting (Budd and Iserles 1999, McLachlan and
Quispel 2001a, Iserles, Munthe-Kaas, Nørsett and Zanna 2000), but we shall
not discuss them here.

Some applications of splitting methods (and geometric integration more
generally) to physics (molecular dynamics, particle accelerators, quantum
(statistical) mechanics), chemistry, biology, celestial mechanics, hydrodyn-
amics and other areas of science are discussed in Section 5.

Finally, some open problems in splitting methods and geometric integra-
tion are discussed in Section 6.

We usually work in standard coordinates on R
n. However, from time

to time we use coordinate-free notation (Marsden and Ratiu 1999) on an
arbitrary manifold M ; these parts can be skipped by the reader unfamiliar
with differential geometry.

2. Groups of diffeomorphisms

2.1. Classifications of dynamical systems

As discussed in the introduction, splitting methods are particularly useful
for the system ẋ = X(x) when the flow of X lies in a particular group of
diffeomorphisms. Indeed, the classification of such groups was first studied
by Lie, who listed the symplectic, volume-preserving, and contact subgroups
of the diffeomorphism group of a manifold.2 However, passing to ‘group’ is
jumping the gun a little, for at least two other algebraic structures come up
in dynamical systems. We can make a primary classification of discrete-time
dynamical systems into three categories (McLachlan and Quispel 2001b):

(1) those which lie in a semigroup (e.g., the set of all maps ϕ : M → M ,
where M is the phase space);

(2) those which lie in a symmetric space (e.g., sets of diffeomorphisms
closed under the composition ϕψ−1ϕ, such as maps with a given time-
reversal symmetry); and

(3) those which lie in a group (e.g., the group of all diffeomorphisms of
phase space).

2 Recall that a diffeomorphism of a manifold M is a map ϕ : M → M which is differenti-
able and has a differentiable inverse. Klein (1893), in his Erlangen programme article,
also covers infinite-dimensional groups, discussing diffeomorphisms, homeomorphisms,
polynomial automorphisms, and contact transformations.
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Splitting and composition are relevant, with suitable restrictions, to all
three categories. Although we occasionally mention semigroups (e.g., in
Section 4.4) and symmetric spaces (e.g., in Section 3.11), we will mostly
consider groups. The set of vector fields whose flows lie in a group (re-
spectively, semigroup, symmetric space) form a Lie algebra (respectively,
Lie wedge (Hilgert, Hofmann, Heinrich and Lawson 1989), Lie triple system
(Munthe-Kaas, Quispel and Zanna 2002)).

2.2. Examples of diffeomorphism groups

Geometric integrators can be classified according to their diffeomorphism
group.

Definition 1. Let X be a Lie algebra of vector fields on a manifold M ,
i.e., a linear space of vector fields on M closed under the Lie bracket [X,Y ]
where [X,Y ]f := (XY −Y X)f , whose flows lie in a subgroup G of the group
of diffeomorphisms of M . A geometric integrator for X ∈ X is a 1-parameter
family of maps ϕ(τ) ∈ G satisfying

ϕ(τ) = exp(τX) + O(τ2).

We call it a G-integrator. If X =
∑
Xi where each Xi is either (i) integrable

in terms of elementary functions, or (ii) integrable by quadratures, or (iii) has
G-integrators simpler than those for X, we say X can be split.

Diffeomorphism groups can be finite- or infinite-dimensional. For the
finite-dimensional case, the flow of the ODE ẋ = X(x, t), X(·, t) ∈ X ∀t,
belongs to G, where in this case X is a finite-dimensional Lie algebra. (For
example, ẋ = A(t)x, where x ∈ R

n and A(t) ∈ so(n); the flow is orthogonal.)
The group orbit through the initial condition x0 is a homogeneous space;
the construction of G-integrators for ODEs on homogeneous spaces is an
important part of geometric integration, for which an extensive and beautiful
theory has been developed (Munthe-Kaas and Zanna 1997). When M is
1-dimensional, the only infinite-dimensional group on M is the set of all
diffeomorphisms; however, when M is 2-dimensional, several new infinite-
dimensional groups appear, such as the area-preserving mappings.

(In fact, there is no general theory of all diffeomorphism groups. One
restriction is to study the so-called Lie pseudogroups, sets of local diffeo-
morphisms which are the general solution of a set of local PDEs and which
are closed under composition only when the composition is defined. The
flows of a Lie algebra of vector fields generally form a pseudogroup, because
for a fixed time the flow of a given vector field need not be defined for all
x ∈M . For our applications, the distinction between local and global diffeo-
morphisms (i.e., between Lie pseudogroups and groups of diffeomorphisms),
is not crucial and will not be emphasized.)
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Example 5. (Complex maps) Let M = R
2 and write ϕ = (u, v) ∈

Diff(M). Then G = {ϕ : ux = vy, uy = −vx}, defined by the Cauchy–
Riemann equations, may be identified with the set of complex analytic map-
pings, an infinite-dimensional group. Any differential equation ż = f(z),
z ∈ C, f analytic, has a flow in G; Euler’s method in the variable z is a
G-integrator.

Example 6. (Area-preserving maps) G = {ϕ : uxvy−uyvx = det Tϕ =
1}, the symplectic (equivalent in R

2 to area-preserving) mappings, is also
infinite-dimensional. (Here Tϕ is the tangent mapping of ϕ.) Its Lie al-
gebra is the divergence-free vector fields, which have the form ẋ = Hy(x, y),
ẏ = −Hx(x, y). Symplectic integrators such as the midpoint rule provide
G-integrators.

Diffeomorphism groups can be primitive or nonprimitive.

Example 7. (A nonprimitive group) G = {ϕ : vx = 0} = {ϕ : (x, y) 7→
(u(x, y), v(y))} is infinite-dimensional. G-integrators have earlier been called
‘closed under restriction to closed subsystems’ (Bochev and Scovel 1994). All
elements of G map the set y = c1 (where c1 is a constant) to the set y = c2
(where c2 = v(c1) is another constant). We say that ϕ leaves the foliation
y = const invariant. Groups that leave a foliation invariant are said to be
not primitive. However, they do arise in geometric integration and we will
consider them in Section 2.5.

Definition 2. (Kobayashi 1972) A foliation of M (see Definition 3) is
invariant under G if ϕ permutes the leaves of the foliation for all ϕ ∈ G

(i.e., if G maps leaves to leaves). A foliation of M is fixed under G if ϕ maps
each leaf to itself for all ϕ ∈ G. A group G is called primitive if it leaves no
nontrivial foliation invariant.

Example 8. (No nonlinear rotations) Let M = R
n, let G be a Lie

subgroup of GL(n), and let G be the group consisting of all diffeomorph-
isms whose derivative lies in G for all x ∈ M . It can be finite- or infinite-
dimensional. If G is the group Sp(n) of symplectic matrices, G is the
infinite-dimensional set of symplectic maps; but for G = SO(n), G is finite-
dimensional. Indeed, writing

∑n
i=1 fi(x)

∂
∂xi

for an element of the Lie algebra
of G, we have

fi,j + fj,i = 0 ⇒ fi,jk = fi,kj = −fk,ij = −fk,ji = fj,ki = fj,ik = −fi,jk = 0,

so the general solution is f(x) = Ax+ b for A ∈ so(n), b ∈ R
n.

2.3. The big picture

It is clear that such classifications are absolutely central, not just to geo-
metric integration but also to dynamical systems in general. In each case,
one should consider the following.
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(1) Classify all instances, e.g., all groups or all symmetric spaces.

(2) Is the structure invariant under diffeomorphisms or homeomorphisms?
(For example, many common systems preserve the Euclidean volume.
But in another smooth coordinate system, a different volume is pre-
served, so we should consider systems preserving arbitrary smooth
volume forms. Generalizing further leads to continuous-measure or ar-
bitrary measure-preserving systems. The situation is similar for Hamil-
tonian, reversible, and other systems.)

(3) What is the structure’s local normal form? Does it make sense to as-
sume this form? (For example, the local normal form of a symplectic
structure is dqi ∧ dpi; it is certainly worthwhile to consider this case
globally, because it is so common in applications and simplifies mat-
ters enormously; but doing so throws away all of modern symplectic
geometry. Conversely, the local normal form of an integral at a regular
point is I(x1, . . . , xn) = x1, but assuming this form would be ridiculous
in most settings.)

(4) How can the structure be detected in a given system? (It is of course
easy to tell if a system preserves a given integral or symplectic form.
The harder problem is to tell if a system preserves any such structure.
There is no known characterization of systems that have an integral
or preserve a symplectic form, for example, only necessary conditions,
e.g., that all fixed points have a zero eigenvalue in the first case, or +/−
eigenvalue pairs in the second case. Conversely, there are algorithms
that detect Lie symmetries in many cases.)

(5) How are the groups related to each other, e.g., under intersection? (For
example, Hamiltonian systems with symmetry have a richer structure
than either class alone.)

(6) How does the structure affect the dynamics? (There is a range of
possibilities. In some cases, e.g., Hamiltonian mechanics, it is extremely
subtle and so important as to be almost a definition of the field. In
others, e.g., systems with an integral, it is obvious.)

(7) What does the neighbourhood of each subgroup look like? (For ex-
ample, what are the features of Hamiltonian nearly symmetric dynam-
ics, or symmetric nearly Hamiltonian?)

2.4. The Cartan classification: the primitive groups

Cartan developed a structure theory of diffeomorphism groups and gave a
classification of the complex primitive infinite-dimensional diffeomorphism
groups, finding 6 classes (Cartan 1909).

We give the classification here briefly, and outline how each case arises
in geometric integration. In each case it is crucial to consider whether the
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structure is presented in its local canonical form, the general form being
usually much harder to preserve in an integrator.

A primitive infinite-dimensional group of diffeomorphisms G on a complex
manifold M must be one of the following.

(1) The group of all diffeomorphisms of M . Almost any one-step integrator
lies in this group for small enough time step.

(2) The diffeomorphisms preserving a given symplectic 2-form ω. Its Lie al-
gebra consists of the locally Hamiltonian vector fields, X such that iXω
is closed. G-integrators are called symplectic integrators (Section 3.2.
They have only been generally constructed in two cases, when ω is the
canonical symplectic 2-form on R

n and when M is a coadjoint orbit
of a Lie algebra (Lie–Poisson integrators (Ge and Marsden 1988), Sec-
tion 3.3). To classify these groups further depends on classifying the
symplectic forms on M , which is an open problem.

(3) The diffeomorphisms preserving a given volume form µ on M . Its
Lie algebra consists of the divergence-free vector fields X such that
divµX = 0. Volume-preserving integrators have been considered both
in the canonical case M = R

n, µ = dx1 . . . dxn (Feng and Wang 1994),
and in the general case (Quispel 1995).

(4) The diffeomorphisms preserving a given contact 1-form α up to a
scalar function. Contact integrators for the canonical case α = dx0 +∑
x2i dx2i+1 have been constructed by Feng (1998). A non-canonical

example is provided by a Hamiltonian vector field restricted to an en-
ergy surface; the theorem of Ge (Ge and Marsden 1988) on energy-
symplectic integrators shows that we should not expect to be able to
construct G-integrators in this case.

(5) The diffeomorphisms preserving a given symplectic form ω up to an
arbitrary constant multiple. That is, ϕ∗ω = cϕω, where the constant
cϕ depends on ϕ ∈ G. (Here ϕ∗ω is the pull-back of the 2-form ω by
the map ϕ: see, e.g., Marsden and Ratiu (1999).) We study ODEs and
integrators for this conformal symplectic group in Section 3.6.

(6) The diffeomorphisms preserving a given volume form µ up to an ar-
bitrary constant multiple. That is, ϕ∗µ = cϕµ, where the constant cϕ
depends on ϕ ∈ G. We study this conformal volume-preserving case in
Section 3.5.

(The case of a real manifold M is subtly different. The above 6 groups are
also primitive infinite-dimensional in that case, but when the real manifold
also carries a complex structure, there are a further 8 cases (McLachlan and
Quispel 2001b).)

Note that all these cases are defined by the preservation of a differential
form. Of course, the diffeomorphisms that preserve any collection of differ-
ential forms form a group; the point is that it is usually finite-dimensional.
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The theory of dynamical systems has thus far mostly studied general
diffeomorphisms, complex diffeomorphisms in complex dynamics, symplectic
diffeomorphisms in Hamiltonian dynamics and, to a lesser extent, volume-
preserving diffeomorphisms. The conformal and nonprimitive groups have
not been studied as much. Clearly, when the flow of a system lies in such
a group it has special dynamics; but luckily, the group also provides special
tools (e.g., complex analysis!) with which to study that dynamics.

2.5. Nonprimitive groups: systems with integrals, symmetries, and

foliations

The largest nonprimitive group is the set of all diffeomorphisms that preserve
a given foliation, that is, that map leaves to leaves. It is best to think here of
what is called a simple foliation, one defined by the level sets of a function.
Even regarding constructing integrators, the class of all foliations seems to
be too large to admit a useful theory, and we are led (following the example
of Lie group integrators (Iserles et al. 2000, Munthe-Kaas and Zanna 1997))
to consider foliations defined by the action of a Lie group. We introduce
these with an example.

Example 9. (Caesar’s laurel wreath) Let M = R
2 and consider the

vector field

ẋ = xy + x(1 − x2 − y2), ẏ = −x2 + y(1 − x2 − y2). (2.1)

In polar coordinates, this becomes

ṙ = r(1 − r2), θ̇ = −r cos θ,

showing that the foliation into circles r = const is invariant under the flow.
(In fact, this foliation is singular, because the leaf through the origin, a single
point, has less than maximal dimension.) A one-step integrator is foliate if
the final value of r is independent of the initial value of θ. Of course, this
is easy to obtain in polar coordinates, but in fact no standard integrator in
Cartesian coordinates is foliate. The leaves of this foliation are the group
orbits of the standard action of SO(2) on R

2 (see Figure 2.1).

Another way to describe foliate systems is that they contain a reduced
subsystem on the space of leaves. In Example 9, the reduced system is
ṙ = r(1 − r2). For a given orbit of the reduced system, one can often find a
reconstruction system which describes the motion on the leaves themselves.
In Example 9, for a reduced orbit r(t), the reconstruction system is θ̇ =
−r(t) cos θ. For integrators, we do not usually want to construct the reduced
system explicitly since the original phase space M is usually linear and easier
to work in. We want integrators that preserve the foliation automatically.

For a given foliation, the group of foliate diffeomorphisms has many in-
teresting subgroups, which have not been classified.
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Figure 2.1. Three foliate vector fields that each map circles to circles, that is,
they each preserve the same foliation into concentric circles. Top: a general
foliate vector field, ṙ = r(1 − r2), θ̇ = −r cos θ. Middle: a system with an
integral, ṙ = 0, θ̇ = −r cos θ. Bottom: a system with a continuous symmetry,
ṙ = r(1 − r2), θ̇ = −(1 + r2/5). The dots mark times 0, 0.5, and 1



362 R. I. McLachlan and G. R. W. Quispel

First, a system may preserve several different foliations. A tree-like struc-
ture of reduced and reconstruction systems can be obtained by first reducing
by all foliations with 1-dimensional leaves (leaving the largest possible re-
duced systems), then by all foliations with 2-dimensional leaves, and so on.
For example, the system

ẋ = f(x), ẏ = g(x, y), ż = h(x, z)

has two 2-dimensional reduced systems in (x, y) and (x, z). Each of these is
foliate with respect to x = const, with the same reduced system ẋ = f(x).
Clearly the full foliate structure of a system will affect its dynamics.

Second, we get other infinite-dimensional nonprimitive Lie algebras of vec-
tor fields by considering (i) the vector field to lie in some other Lie algebra,
as of Hamiltonian or volume-preserving vector fields; (ii) the reduced system
to lie in some other Lie algebra; (iii) the reconstruction system, considered
as a nonautonomous vector field on a leaf, to lie in some other Lie algebra.
For example, the flows of Hamiltonian vector fields on Poisson manifolds
have trivial reduced systems, since each symplectic leaf is fixed, but are
symplectic on each leaf

The two most important subgroups of the foliate diffeomorphisms are
systems with integrals and systems with continuous symmetries.

Example 10. (Just circles) Following Example 9, consider the systems
in polar coordinates with

ṙ = 0, θ̇ = f(r, θ).

The reduced systems ṙ = 0 are trivial, the function r is a first integral of
the system and each leaf is fixed.

Example 11. (The iris) Following Example 9, consider the systems in
polar coordinates with

ṙ = f(r), θ̇ = g(r).

The reduced dynamics is arbitrary but the reconstruction dynamics is clearly
special (in fact, trivial). These are the systems which are invariant under
the group action which defines the foliation, i.e., they have a continuous
rotational symmetry.

Figure 2.1 indicates the relationship between the three foliate groups in
this case.

2.6. Non-Lie diffeomorphism groups

Finally, all of the above diffeomorphism groups have infinite-dimensional
subgroups which are not locally defined (they are not of ‘Lie type’).
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Example 12. (Discrete symmetries) With G a diffeomorphism group,
G a discrete group acting on M , the G-equivariant maps {ϕ ∈ G : ϕ ◦ g =
g ◦ ϕ ∀g ∈ G} form a group.

Example 13. (Weak integrals) The diffeomorphisms with given invari-
ant sets (for example, a given list of fixed points and periodic orbits) form
a group for which we would like to construct G-integrators. Fixed-point-
preserving integrators are known (Stuart and Humphries 1996). More gen-
erally, suppose for ẋ = X there is a function I : M → R

k such that
İ = f(I)g(x). Note that I is not an integral, but the levels sets of I which
satisfy f(I) = 0 are invariant under the flow. Such an I is called a weak

integral of X. Single weak integrals (k = 1) are the most important, for
they represent barriers to transport in phase space. A system might have
a lot of them, for example ẋi = xif(x), for which all n hyperplanes xi = 0
are invariant. The group of diffeomorphisms with given weak integrals has
subgroups obtained by restricting the flow only on the invariant level set to
lie in some group of diffeomorphisms of that set. Weak integrals commonly
arise as the fixed set of a symmetry. For example, if x1 7→ −x1 is a symmetry
then the hyperplane x1 = 0 is invariant.

Example 14. (Polynomial automorphisms) For M = R
n or M = C

n

the invertible polynomial maps with polynomial inverses form a group (van
den Essen 2000). It is infinite-dimensional, but not of Lie type. Its Lie
algebra consists of the polynomial vector fields, but clearly the flow of a
polynomial vector field is not necessarily a polynomial, that of ẋ = x2 for
instance. However, as we will see below, for some classes, namely symplectic
and volume-preserving polynomial vector fields, we can construct explicit
polynomial integrators by splitting. This is desirable for speed, smoothness,
and global invertibility.

3. Splitting

3.1. Generating functions

The first step in constructing a splitting, or rather, a general approach to
splitting for a given class of systems, is to parametrize all the vector fields
in the given linear space of systems. This amounts to finding the general
solution of a set of linear PDEs. (In McLachlan and Quispel (2001b) we
called this solution a generating function.) For example, the ODE q̇i =

fi(q, p), ṗi = gi(q, p) is Hamiltonian if ∂fi
∂qj

+ ∂gi
∂pj

= 0 for all i and j, a linear

PDE which is to be solved for f and g to find the Hamiltonian vector fields.
Similarly, the ODE ẋi = fi(x) has integral I(x) provided

∑
i fi

∂I
∂xi

= 0,
which is to be solved to find all such f . In the cases of interest these
PDEs are very simple and one can always find the general solution locally.
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Globally it can be more difficult, especially if M 6= R
n. We start with the

most common case, the Hamiltonian vector fields.

3.2. Hamiltonian systems

In this case the group in question is the group of symplectic maps, those
that preserve a given symplectic 2-form, and its Lie algebra is the set of
‘locally Hamiltonian’ vector fields, those whose flow is symplectic. In the
canonical case a Hamiltonian system on R

2n is defined by the ODE

XH :

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

,

where H(q, p) is the energy or Hamiltonian function. That is, there is a
bijection between the Hamiltonian vector fields and the scalar functions
(H) modulo constants. We say the function H is a generating function for
the vector field XH . Splitting in this case amounts to

XH = X∑Hi
=
∑

XHi
,

so that we must split H into a sum of simpler Hamiltonians. The most
important examples of such simple Hamiltonians are T (p) and V (q), as in
Example 1, but many others have been proposed and used:

• on M = R
2n, H = xTAx and XH linear;

• on M = T ∗Q, Q Riemannian, the free particle H = ‖p‖2, many clas-
sically integrable cases of which are known;

• for any free particle on T ∗Q, the metric can be (in theory) diagonalized
and split into integrable 2D systems;

• integrable two body Hamiltonians H(qi, qj , pi, pj), such as central force
problems, the Kepler problem (Wisdom and Holman 1991), and point
vortices;

• on M = R
2n, Feng’s ‘nilpotent of degree 2’ Hamiltonians H(Cx), where

CJCT = 0, C ∈ R
n×2n, which are the most general Hamiltonians whose

orbits are straight lines and are computed by Euler’s method (Feng and
Wang 1998);

• monomials (Channell and Neri 1996);

• various other integrable Hamiltonians arising in accelerator physics and
celestial mechanics;

• lattice quantum systems with only near- or nearest-neighbour interac-
tions, which are split into noninteracting parts by, e.g., a checkerboard
splitting (De Raedt 1987);
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• finite difference spatial discretizations of PDEs, which are treated sim-
ilarly.

What unifies all these cases? The usual answer is that they are all (Liouville)
integrable. That is, there exist n functions I1, . . . In, such that {H, Ij} = 0
for all j, {Ii, Ij} = 0 for all i, j, and that the {dIj} are linearly independent
for almost all x. However, this does not seem to embody the spirit of
the preceding list, the main point of which is that they are all explicitly
integrable in terms of elementary functions. Liouville integrability alone
does not make it easy to compute the flow of H. Even the free rigid body,
which can be integrated in terms of elliptic functions, is so complicated
that, as far as we are aware, nobody has bothered to implement it in an
integrator. Alternatively, consider the cost of evaluating the solution of an
arbitrary planar Hamiltonian system.

With this in mind, we note the following class of systems which unifies
and generalizes the class of ‘easily’ integrable systems. (We use the Pois-
son bracket {F,G}, which in the canonical case is defined by {F,G} =∑ ∂F

∂qi
∂G
∂pi

− ∂F
∂pi

∂G
∂qi

; see also Section 3.3.)

Theorem 1. Let F1, . . . , Fk be k functions such that XFi
is integrable for

all j and {Fi, Fj} = 0 for all i and j. Then, XH for H = H(F1, . . . , Fk) is

integrable. Furthermore, if ∂H
∂Fi

and exp(XFi
) can be evaluated in terms of

elementary functions, then so can exp(XH).

Proof. From the Leibniz rule for Poisson brackets, we have

XH =
k∑

i=1

∂H

∂Fi
XFi

. (3.1)

Now
d

dt

∂H

∂Fi
=

{
∂H

∂Fi
, H

}

=

k∑

j=1

k∑

l=1

∂2H

∂Fi∂Fj

∂H

∂Fl
{Fj , Fl}

= 0,

so the coefficients of the XFi
in (3.1) are constant along orbits. Furthermore

[XFi
, XFj

] = X{Fj ,Fi} = 0 so the flows of the vector fields XFi
commute.

The flow of XH is therefore given by the composition of the time-∂H/∂Fi

flows of the XFi
. �

This is not quite the same as Liouville integrability for example, when
k < n the integrals of Fi are not necessarily shared by H, apart from the
Fj . We believe it accounts for most, if not all, Hamiltonian splittings ever
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proposed, except for one: the Kepler problem seems to be the sole integrable
system that is not integrable by elementary functions (it requires the root
of a scalar nonlinear equation (Dutka 1997)), which it has been worthwhile
implementing in integrators.

Therefore it is important to know sets of suitable commuting functions
Fi. In all the cases listed above, these are one of the following:

(1) Fi = qi, i = 1, . . . , n;

(2) Fi = pi, i = 1, . . . , n;

(3) F1 = xTAx (i.e., integrate H(F1));

(4) F = Cx where CJCT = 0, the nilpotent class used by Feng and Wang
(1998).

For example, the point vortex Hamiltonian is log(F ) with F = (q1−q2)2+
(p1−p2)

2 quadratic. The nonlinear term in the nonlinear Schrödinger equa-
tion is F 2, where F = |ψ|2 is quadratic. The much larger classH(F1, . . . , Fk)
with Fi = xTAix and AT

i JAj = AT
j JAi for all i, j has yet to find applica-

tions.
The dynamics of Hamiltonian systems is typically very different from that

of non-Hamiltonian systems, and many of their typical properties are pre-
served by symplectic integrators; see, e.g., Reich (1999). We mention just
one property here, the preservation of invariant (KAM) tori. As Broer,
Huitema and Sevryuk (1996) have remarked, the significance of KAM theory
lies not so much in its guarantees that a particular invariant torus is pre-
served under perturbation, but in its assertion that invariant tori are generic
in families of systems of various classes (Hamiltonian, volume-preserving, re-
versible). Thus, while it is difficult to tell when a given invariant torus of a
nonintegrable Hamiltonian system is preserved by an integrator, we do have
many more general results, such as the following.

Theorem 2. (Shang 2000) Let there be an analytic, nondegenerate and
integrable Hamiltonian system of n degrees of freedom, together with a
frequency ω, in the domain of frequencies of the system, which satisfies a
Diophantine condition of the form

| 〈k, ω〉 | ≥ γ

|k|ν 0 6= k = (k1, . . . , kn) ∈ Z
n,

for some γ > 0 and ν > 0. Then there exists a Cantor set I(ω) of R, for any
symplectic algorithm applied to the system, and a positive number δ0, such
that, if the step size τ of the algorithm falls into the set (−δ0, δ0) ∩ I(ω),
then the algorithm, if applied to the integrable system, has an invariant
torus of frequency τω. The invariant torus of the algorithm approximates
the invariant torus of the system in the sense of Hausdorff, with the order
equal to the order of accuracy of the algorithm. The Cantor set I(ω) has
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density one at the origin in the sense that

lim
δ→0+

m((−δ, δ) ∩ I(ω))

m(−δ, δ) = 1.

3.3. Poisson systems

An important generalization of Hamiltonian systems are Poisson systems

(Weinstein 1983, Marsden and Ratiu 1999) such as the rigid body (Ex-
ample 2). A Poisson manifold is a manifold equipped with a Poisson bracket,
an operation {, } : C∞(M) × C∞(M) → C∞(M) satisfying (i) bilinearity
{F, aG + bH} = a{F,G} + b{F,H}; (ii) antisymmetry {F,G} = −{G,F};
(iii) the Jacobi identity {F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0; and
(iv) derivation {FG,H} = F{G,H}+G{F,H} Then there exists a 2-vector
J , a bilinear antisymmetric map J : Λ1(M) × Λ1(M) → R, such that

{F,G} = J( dF, dG).

A Poisson vector field is one whose flow is Poisson, that is, it preserves the
Poisson bracket,

{F ◦ exp(X), G ◦ exp(X)} = {F,G} ◦ exp(X).

The Poisson vector fields form an interesting Lie subalgebra of the algebra
of vector fields on M , one that has not been studied a great deal. However,
they have an important subalgebra, the Hamiltonian vector fields, defined by

XF := J(·, dF ).

The Poisson manifold M is foliated by leaves that carry a symplectic
form ω satisfying ω(XF , XG) = {F,G}. Often, these leaves are the level
sets of a function C : M → R

k, called a Casimir, which satisfies J(·, dC) ≡
0. Poisson vector fields preserve this foliation (i.e., they map leaves to
leaves), while Hamiltonian vector fields are tangent to it (i.e., they map
each leaf to itself). Thus, Poisson and Hamiltonian vector fields form natural
nonprimitive Lie algebras. They arise in mechanics because they are stable
under reducing to the leaf space of a system with symmetry, a property which
symplectic manifolds lack. They also provide a way of realizing noncanonical
symplectic manifolds as a leaf of a linear Poisson manifold, which is useful
for computation.

Splitting is crucial to finding integrators in this case, because there are no
general Poisson integrators. Theorem 1 also applies in the Poisson case.
However, it raises the question of finding commuting sets of integrable
Hamiltonians on M , a tall order: one can regard Darboux’s theorem as
equivalent to constructing these functions locally. Note, however, that if we
can find any integrable Hamiltonians Fi, not in involution, then we can at
least construct explicit Poisson integrators for H =

∑
Hi(Fi).
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This is true in the important Lie–Poisson case, in which M = g∗ is the
dual of a Lie algebra g, and {F,G} = 〈x, [ dF, dG]〉. (Crucially, J(x) is
linear in x.) Because X〈x,c〉 is linear in x for all c ∈ g and [X〈x,c〉, X〈x,d〉] =
X〈x,[c,d]〉, Lie–Poisson manifolds carry a finite-dimensional Lie algebra of
linear (and hence integrable) vector fields. (These are the analogues of the
2n-dimensional abelian algebra of constant vector fields on a symplectic
vector space.) This gives explicit Poisson integrators for H =

∑
Hi(〈x, ci〉).

Further, the splittings constructed in Sections 3.12 and 3.13 give us the
following.

Theorem 3. Any polynomial and any trigonometric Lie–Poisson system
can be split into a sum of explicitly integrable systems.

The free rigid body (see Example 2) provides an important example of this
case, with Fi = xi and Hi = x2

i /2Ii. Furthermore, we have the following.

Theorem 4. (Reich 1993) Any Euler equation (a Lie–Poisson system
with Hamiltonian 〈x, x〉 for some inner product) can be split into a sum of
explicitly integrable systems.

Proof. If the original basis is (xi), choose a basis (vi) in which the inner
product is diagonal. Then take Fi = vi and integrate either in the basis xi
or vi. �

Moreover, let g1 be an abelian subalgebra of g, corresponding to the
space of commuting Hamiltonians 〈x, g1〉. Following Theorem 1, to integ-
rate H(〈x, g1〉) we only need to be able to integrate fixed linear vector fields
for arbitrary times. (This is an improvement over McLachlan (1995), which
involved integrating linear vector fields containing parameters.)

3.4. Volume-preserving systems

The ODE ẋ = X(x) is divergence-free (or source-free) if

∇ ·X =
n∑

i=1

∂Xi

∂xi
= 0

for all x. The flow of a divergence-free system is volume-preserving.
Some divergence-free systems are very easy to split.

Example 15. (Easy) Consider the ODE ẋi = fi(x) where ∂fi
∂xi

= 0 for
all i. This ODE is divergence-free, and each component

Xi : ẋi = fi(x), ẋj = 0, j 6= i

is integrated exactly by Euler’s method. The ABC system (1.6) is an ex-
ample.
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In contrast with Hamiltonian systems, for which there are standard meth-
ods, such as the midpoint rule, which are symplectic but for which split-
tings have to be constructed on a case-by-case basis, no standard meth-
ods are known that are volume-preserving (Feng and Wang 1994), but any
divergence-free vector field can be split. Informally, this is because the
volume-preserving group is a superset of the symplectic group: this makes
splitting easier (more pieces to choose from) but general-purpose integra-
tion harder (the integrator must cope with more systems). By the same
argument, symplectic integrators are not volume-preserving when applied
to non-Hamiltonian systems.

Volume-preserving splitting methods were first introduced by Feng (1993).
As for Hamiltonian systems, we wish to find a generating function for all
divergence-free systems. This can be done as follows.

Theorem 5. Let M = R
n with the Euclidean volume form. The vector

field X is divergence-free if and only if there exists an antisymmetric matrix
S(x) such that

X = ∇ · S. (3.2)

That is, ẋi = Xi(x) =
∑n

j=1 ∂Sij/∂xj . Each such S leads to a splitting of
X into a sum of essentially two-dimensional volume-preserving systems.

Proof. First, if S is given, then

∇ ·X = ∇ · ∇ · S =
∑

i,j

∂2S

∂xi∂xj
= 0.

The converse is proved in Appendix A, where we construct a specific S for
a given X. Finally, any matrix S leads to a splitting of X := ∇ · S into a
sum of n(n− 1)/2 two-dimensional divergence-free ODEs, namely

ẋi =
∂Sij
∂xj

,

ẋj = −∂Sij
∂xi

,

ẋk = 0, k 6= i, j,

for 1 ≤ i < j ≤ n. (Each of these ODEs is Hamiltonian in the (xi, xj)
plane and divergence-free in R

n, although they are not usually Hamiltonian
in R

n.) �

The splitting of a divergence-free vector field is not at all unique. It
corresponds to a general generating function for such systems on arbit-
rary manifolds given in the next theorem. However, the splitting given
in Appendix A has some advantages over earlier methods (McLachlan and
Quispel 2001a, Feng 1998): it only contains n− 2 anti-derivatives, contains
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no multiple integrals, is quite specific, yet allows a lot of freedom with re-
spect to integration constants. This method (and all other known general
methods) does have two disadvantages. First, it does not preserve sym-
metries, not even translational symmetries. (The latter problem can be
overcome for trigonometric vector fields: see Section 3.13.) Second, it may
not preserve smoothness (see Section 6.3). These disadvantages are reasons
to prefer splittings in which each Xi is explicitly integrable.

The advantages of splitting into essentially two-dimensional pieces are that
(i) they are all integrable, hence possibly integrable in terms of elementary
functions, and (ii) they are area-preserving in their plane, and any symplectic
integrator (such as the midpoint rule) can be used to preserve area. Even
though such an integrator is not symplectic in the whole space R

n, it is

volume-preserving.
We finish this subsection by generalizing to systems on an arbitrary volume

manifold.

Theorem 6. Let µ be a volume form on a manifold M and let X be a
vector field whose flow preserves µ. Then there exist an (n− 2)-form β and
an (n−1)-form γ ∈ H(n−1)(M), the equivalence class of closed (n−1)-forms
modulo exact (n− 1)-forms, such that

iXµ = dβ + γ.

Proof. We have

LXµ = diXµ+ iX dµ = diXµ = 0,

that is, iXµ = 0 is closed, from which the result follows. �

Note that, if M is simply connected, H1(M) ∼= Hn−1(M) = 0 so γ = 0.
If M = R

n, the (n− 2)-form β plays the role of the antisymmetric matrix S
in Theorem 5.

Example 16. (Volume preserving on a cylinder) Any divergence-free
vector field which preserves the standard volume on the cylinder T

n × R
m

can be written

X = c+ ∇ · S,
for some antisymmetric matrix S and some constant vector c which has no
component along the cylinder.

3.5. Conformal volume-preserving systems

The two most famous conformal volume-preserving dynamical systems are
the Lorenz system in R

3 (Example 22) and the Hénon map in R
2. Let µ be

a volume form on a manifold M . Let X preserve µ up to a constant and let
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Z be any fixed vector field which preserves µ up to a constant 1, that is,

LXµ = cµ, LZµ = µ.

Then LX−cZµ = 0, that is, X − cZ is volume-preserving, the generation of
which is given in Theorems 5 and 6. So we can split such systems if we
can find an integrable Z. A composition method then leads to the volume
expanding or contracting at exactly the correct rate.

Note that LZµ = diZµ+ iZ dµ = diZµ = µ, that is, M must be exact if
such a Z exists.

On R
n with the Euclidean volume form, we can take Z =

∑ 1
nxi

∂
∂xi

(cer-

tainly integrable), which gives a representation of the constant-divergence
vector fields as

X =
∑

i

(
∑

j

∂Sij
∂xj

− c

n
xi

)
∂

∂xi
, (3.3)

where Sij(x) = −Sji(x).
The conformal property implies that the sum of the Lyapunov exponents

is equal to divµX. A system which contracts some volume element cannot
have a completely unstable fixed point, a topological invariant of this class
of systems. However, the conformal property is not believed to be a decisive
factor in controlling the dynamics in the way that volume preservation itself
is. The volume contraction is so strong that all nearby systems may have
similar dynamics. Still, the conformal volume-preserving group has infinite
codimension in the full diffeomorphism group and staying in it may confer
some advantage.

Example 17. (Linear dissipation) On R
n, any volume-preserving (e.g.,

Hamiltonian) system ẋ = X becomes conformal volume-preserving on the
addition of linear dissipation Lx. For example, writing the inviscid Euler
fluid equations as ω̇ = N(ω), the Navier–Stokes equations ω̇ = N(ω) +
ν∇2ω are conformal volume-preserving in standard discretizations. Simil-
arly, a Hamiltonian system on T ∗Q with the addition of Rayleigh dissipa-
tion, namely q̇ = Hp, ṗ = −Hq − R(q)p, is conformal volume-preserving if
trR(q) = const.

3.6. Conformal Hamiltonian systems

One finds the vector fields as in the last section. Let (M,ω) be a symplectic
manifold. Let X preserve ω up to a constant and let Z be any fixed vector
field which preserves ω up to a constant 1, that is,

LXω = cω, LZω = ω.

Then LX−cZ = 0, that is, X − cZ is Hamiltonian. So we can split such
systems if we can find an integrable Z. A composition method then leads



372 R. I. McLachlan and G. R. W. Quispel

to the symplectic form expanding or contracting at exactly the correct rate.
As before, M must be exact (ω = −dθ) and not compact.

In the canonical case, M = R
2n, θ = p dq, and ω = dq ∧ dp, giving the

conformal Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
− cp. (3.4)

For H = 1
2‖p‖2 +V (q), these are mechanical systems with linear dissipation.

(The structure of these systems is studied in McLachlan and Perlmutter
(2001).) Since this form of dissipation is special mathematically (forming a
group), we argue it must be special physically too.

For the general conformal Hamiltonian system (3.4), the energy obeys
Ḣ = −cpTHp which can have any sign. The system can have a ‘con-
formal symplectic attractor’, as does the Duffing oscillator, Example 3. For
autonomous simple mechanical systems, however, H = 1

2‖p‖2 + V (q), and

Ḣ = −c‖p‖2 ≤ 0. The energy becomes a Lyapunov function and all orbits
tend to fixed points.

The eigenvalues of the Jacobian of X (and hence the Lyapunov exponents
of X) occur in pairs with sum −c; the spectrum is as constrained as that
of Hamiltonian systems. Consider an invariant set (fixed point, periodic
orbit, etc.) with stable manifold W s and unstable manifold W u. Their
dimensions obey

dimW s





≤ dimW u for c < 0,

≥ dimW u for c > 0,

= dimW u for c = 0.

(3.5)

Since these dimensions are invariant under homeomorphisms, the inequal-
ity (3.5) is a topological invariant. A system in which one of these three
conditions did not hold for all invariant manifolds could not be conformal
symplectic.

Conformal Hamiltonian systems also have characteristic properties in the
presence of symmetries (see Section 3.10). If there is a momentum map J
which evolves under J̇ = 0 for Hamiltonian systems, it obeys J̇ = −cJ for
conformal Hamiltonian systems. The two foliations of M into orbits of the
symmetry and into level sets of the momentum are still both preserved.

As before, geometric integrators can be constructed by splitting: Z can
be integrated exactly, and a symplectic integrator applied to the remainder.
Alternatively, since Z is linear, one can split off the entire linear part of X
and integrate it exactly (see Example 3). The order can be increased by
composition.

Splitting is actually more important in the conformal than in the standard
Hamiltonian case, as there are standard methods (the Gaussian Runge–
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Kutta methods) that are symplectic, but no standard method is conformal
symplectic (McLachlan and Quispel 2001b).

Geometric integrators for the conformal cases are particularly useful when
the dissipation rate c is small; in particular, when studying the limit c→ 0.

3.7. Contact systems

Contact geometry arose from the systematic study of first-order PDEs in
the nineteenth century. In the words of Felix Klein (1893):

By a contact-transformation is to be understood, analytically speaking, any substi-
tution which expresses the values of the variables x, y, z and their partial derivatives
dz

dx
= p, dz

dy
= q in terms of new variables x′, y′, z′, p′, q′. It is evident that such

substitutions, in general, convert surfaces that are in contact into surfaces that are
in contact, and this accounts for the name . . . . [C]ontact transformations may be
defined as those substitutions of the five variables x, y, z, p, q, by which the relation

dz − p dx− q dy = 0 (3.6)

is converted into itself. In these investigations space is therefore to be regarded as a
manifoldness of five dimensions; and this manifoldness is to be treated by taking as
fundamental group the totality of the transformations of the variables which leave
a certain relation between the differentials unaltered.

(The classification of dynamical systems by diffeomorphism groups is ex-
actly within Klein’s Erlangen programme.)

The 1-form (3.6) is an example of a contact form, namely a 1-form α
on a manifold M2n+1 such that the volume form α ∧ ( dα)n 6= 0. Equi-
valently, kerα is a nonintegrable 2n-dimensional distribution on TM . The
diffeomorphism ϕ is contact if it preserves the distribution kerα, that is, if
ϕ∗α = λα for some function λ : M → R. Darboux’s theorem states that all
contact forms are locally equivalent to (3.6), that is, there are coordinates
(x1, . . . , xn, y1, . . . , yn, z) ∈M in which α takes the canonical form

α = dz −
n∑

i=1

xi dyi.

The contact vector fields are generated by the scalar functions K : M → R.
In the canonical case the contact vector field XK generated by K is

ẋi =
∂K

∂yi
+ xi

∂K

∂z
,

ẏi = −∂K
∂xi

,

ż = K −
n∑

i=1

xi
∂K

∂xi
.
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Then LXK
α = λα where λ = ∂K/∂z. (In contrast to Hamiltonian vector

fields, XK is not invariant under K 7→ K + const.)
Some of the key properties of contact flows are that:

(1) K̇ = λK, so the submanifold K = 0 is invariant.
(2) If K 6= 0 on M , LXK

K−1α = 0 and LXK
dK−1α = 0; the flow has

Hamiltonian-like properties.
(3) If λ 6= 0 on K = 0, then Lλ−1XK

dα = dα; the flow of λ−1XK is con-
formal symplectic with respect to the symplectic form dα|K=0. Fixed
points can only occur on K = 0 and if λ 6= 0 at such a fixed point,
it has the same character as a fixed point of a conformal Hamiltonian
system.

However, a systematic study of the dynamics of contact flows and maps has
yet to be undertaken. (Usually only the case K 6= 0, equivalent to Reeb
vector fields, is studied.)

Contact integrators were first studied by Feng (1998), who constructed
general contact integrators by passing to the ‘symplectified’ system in R

2n+2.
Here we are interested in the question: When can contact integrators be
constructed by splitting? As for Hamiltonian systems, we have to split
the scalar function K. This is much harder than for Hamiltonian systems
because there are very few contact vector fields with straight-line flows, i.e.,
which are integrated by Euler’s method. Amongst simple examples, XK(x)

and XK(y) are integrated by Euler’s method, and XK(y,z) can be integrated
by quadratures.

However, we do have that XK leaves the foliation defined by the level sets
of K invariant if and only if K = K(F (x, y) + z). So in these cases the
reduced system K̇ = g(K) can be integrated by quadratures (although the
reconstruction system in (x, y) is not always integrable).

Theorem 7. For the canonical contact structure on R
2n+1, the contact

vector field XK is integrable by quadratures for K = K(aTx + bTy + cz).
Hence any polynomial contact vector field is a sum of integrable contact
vector fields.

3.8. Foliations: systems with integrals

The vector field X has integrals I1, . . . , Ik if X(Ij) = 0. We first need to find
a generating function, that is, a representation of all systems with a given
set of integrals. This is provided by the following ‘skew-gradient’ form.

Theorem 8. (McLachlan, Quispel and Robidoux 1999) Given inde-
pendent {Ij} and such a vector field X such that X(Ij) = 0, there exists a
(nonunique) (k + 1)-vector S such that

X = S(·, dI1, . . . , dIk).
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For example, on M = R
n and one integral I, there is an antisymmetric

matrix S(x) such that X = S∇I.
On R

n, we can split S =
∑
Si so that each piece has the minimum number

of nonzero components. This gives a representation of an arbitrary system
with k integrals as a sum of (k+ 1)-dimensional vector fields, each with the
same set of k integrals, and hence integrable. However, they may not be
integrable in terms of elementary functions. Still, this is a good place to
look for splittings.

(Incidentally, this also works if there are no integrals at all! Putting k = 0,
we find S = X, and X splits into its n one-dimensional components, each
integrable.)

Example 18. (Energy-preserving methods) A Hamiltonian system has
the form ẋ = J∇H, i.e., it is already presented in skew-gradient form.
Energy-preserving integrators can therefore be constructed by splitting into
the planar systems

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

,

q̇j = ṗj = 0, for j 6= i,

for i = 1, . . . , n, each of which is integrable by quadratures (although not
necessarily in terms of elementary functions).

Example 19. (Korteweg–de Vries equation) One can construct un-
conditionally stable finite difference methods for the KdV equation ut =
3uux + uxxx by requiring the space and time discretizations to preserve a
positive functional such as ‖u‖2. From the above, we see that the space
discretization must have the form u̇i =

∑
j Sij(u)uj where Sij = −Sji. On a

grid with uniform spacing h, let Lu be the 4-point central difference approx-
imation of uxxx, so that LT = −L. Let f(u, v) : R

2 → R be any function
satisfying f(u, v) = f(v, u) and f(u, u) = u/h. Then

f(ui, ui+1)ui+1 − f(ui−1, ui)ui−1 = 3uux + O(h2)

and the associated matrix with Si,i+1 = −Si+1,i = f(ui, ui+1), Si,j = 0
for |j − i| 6= 1, is antisymmetric. (The discretization can also be chosen
to be volume-preserving by taking f(u, v) =

√
u2 + v2/h.) The combined

system u̇ = (S(u) + L)u has integral ‖u‖2. This integral can be preserved
in the time integration by a quadratic-integral-preserving scheme such as
the implicit midpoint rule or by a Lie group integrator (Iserles et al. 2000),
giving linearly implicit, unconditionally stable schemes.

Splitting methods have to be applied with caution to PDEs (see Sec-
tion 5.2). The most complete splitting, into planar subsystems, each a
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rotation, does yield an explicit unconditionally stable method. However,
because it does not satisfy the CFL condition that the numerical domain
of dependence contains the physical domain of dependence, it cannot be
convergent for all τ/h.

When a system has a large number of integrals which it is desirable to
preserve, it is better to see if they arise from some structural feature of the
equation. When the leaves are the orbits of a group action, each orbit is a
homogeneous space and it is possible to make big progress using Lie group

integrators (Iserles et al. 2000). Let Γg : M → M be the group action for
g ∈ G, and write

γ(v, x) :=
d

dt
Γexp(tv)(x)|t=0

so that all DEs tangent to the orbits can be written

ẋ = X = γ(a(x), x)

for some function a : M → g. This function a generates the given class
of DEs, and since it takes values in a linear space g, it can be split into n
components on choosing a basis for g, say v1, . . . , vn and a(x) =

∑
ai(x)vi.

The vector field γ(ai(x), x) is tangent to the one-dimensional group orbit
exp(tvj)(x); hence, if these are integrable, the ODE ẋ = γ(ai(x), x) is integ-
rable by quadratures. Whether they are integrable in terms of elementary
functions depends on a and the choice of basis. Example 19 illustrates both
cases for the natural action of SO(n) on R

n; S ∈ so(n) and the orbits
exp(tvj)(x) are circles in the (ui, ui+1) plane.

Apart from splitting, there are many other ways of preserving the integ-
rals of such systems, such as Runge–Kutta–Munthe-Kaas methods (Iserles
et al. 2000, Munthe-Kaas and Owren 1999, Munthe-Kaas and Zanna 1997).
Splitting is preferred when the pieces are explicitly integrable or when it
is desired to preserve some other property as well as the integrals, such as
volume.

3.9. Foliate systems in general

We introduced foliate systems informally in Section 2.5 and gave the ex-
ample of Caesar’s laurel wreath, Example 9. The implicit midpoint rule,
which preserves arbitrary quadratic first integrals and arbitrary linear sym-
metries, does not preserve the quadratic foliation in that example; splitting
is necessary. We now introduce foliate systems more formally, leading to
two large classes of systems which are amenable to integration by splitting.

Definition 3. (Molino 1988) Let M be a manifold of dimension m. A
singular foliation F of M is a partition of M into connected immersed
submanifolds (the ‘leaves’), such that the vector fields on M tangent to the
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leaves are transitive on each leaf. F is regular if each leaf has the same
dimension. F has codimension q if the maximum dimension of the leaves of
F is m− q. A diffeomorphism of M is foliate with respect to F if it leaves
the foliation invariant, i.e., if it maps leaves to leaves. A vector field on M is
foliate if its flow is foliate. The space of smooth vector fields tangent to the
leaves of F is denoted Xtan. The space of leaves (denoted M/F ) is obtained
by identifying the points in each leaf together with the quotient topology.

Theorem 9. (Molino 1988) XF and Xtan form Lie algebras. Xtan is an
ideal in XF . A vector field X is foliate with respect to F if and only if
[X,Y ] ∈ Xtan for all Y ∈ Xtan.

Usually in the study of foliations one begins with an integrable distribution
on M , which defines a regular foliation. We do not adopt this point of view
because (i) we need global, not local information about the foliation, and
(ii) it allows many exotic foliations, e.g., ones with dense leaves, which we are
not interested in because they may have no foliate vector fields not tangent
to the leaves (the simplest example being the distribution on T

2 defined by
a vector field of constant irrational slope).

Theorem 10. (Molino 1988) Let M and N be manifolds of dimension
m and n, respectively. Let I : M → N be a smooth surjection. (If I is not
onto, we replace N by I(M).) Then I defines a foliation F whose leaves are
given by the connected components of I−1(y) for each y ∈ I(M). If I is a
submersion, that is, if TI has constant rank n, then F is a regular foliation
of codimension n. In this case the space of leaves M/F is diffeomorphic
to N .

Such a foliation is called simple. Given a vector field, one can search for
simple foliations it preserves by looking for functions I such that İ = f(I).

Example 20. (First integrals) A system with k first integrals I : M →
R
k is foliate with respect to the level sets of the functions I. Each leaf is in

fact fixed by the flow. For this reason we choose the symbol I in Theorem 10
to suggest that simple foliate systems generalize systems with first integrals.

Example 21. (Continuous symmetries) A system with a continuous
symmetry is foliate with respect to the orbits of the symmetry. That is,
let X admit the Lie group action Γ : G ×M → M as a symmetry, so that
its flow ϕt is G-equivariant. Then Γ(g, ϕt(x)) = ϕt(Γ(g, x)), that is, the
foliation with leaves given by the group orbits {Γ(g, x) : g ∈ G} is invariant.
In this case the reconstruction problem on G is easier to solve than in the
general case, because it is G-invariant.
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Example 22. (The Lorenz system) The Lorenz system is given by

ẋ = σy − σx,

ẏ = −y − xz − rx,

ż = xy − bx.

If b = 2σ, the system is foliate with leaves x2 − 2σz = const, for

d

dt
(x2 − 2σz) = −2σ(x2 − 2σz).

We split into

X1 : ẋ = σy, ẏ = −xz − rx, ż = xy − bz,
X2 : ẋ = −σx, ẏ = −y, ż = −2σz.

X1 is tangent to the foliation and may be integrated using the midpoint rule,
which preserves the quadratic function x2 − 2σz. X2 is foliate but linear,
and can be solved exactly.

Example 23. (Skew product systems) A special case of the foliations
defined by submersions is given by M = N ×L, I being projection onto N .
Each leaf is then diffeomorphic to L. In coordinates x on N and y on L,
any foliate vector field can be written in coordinates as

ẋ = f(x),

ẏ = g(x, y),

and any tangent vector field as

ẋ = 0,

ẏ = g(x, y).

Example 24. (Nonautonomous systems) The extension of a nonauto-
nomous vector field on M to an autonomous vector field on M×R preserves
the foliation defined by t = const. Most integrators are foliate and, indeed,
solve the reduced system ṫ = 1 exactly.

In a foliate system, one can obtain some information about part of the
system (namely, the current leaf) for all time without even knowing the
full initial condition. This puts strong dynamical constraints on the whole
system.

Example 25. (Three-dimensional foliate systems) Consider a three-
dimensional system with a codimension 1 foliation. In local coordinates the
system can be written

ẋ = f(x), ẏ = g(x, y, z), ż = h(x, y, z).

The only possible ω-limit set of the reduced system ẋ = f(x) is a point,
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suggesting that the ω-limit set of the whole system is either a point, a circle
(periodic orbit), or a heteroclinic cycle. Similarly, for a three-dimensional
system with a codimension 2 foliation, such as

ẋ = f(x, y), ẏ = g(x, y), ż = h(x, y, z),

the ω-limit set of the reduced system in (x, y) is a point, a circle, or a
heteroclinic cycle, suggesting that the ω-limit set of the full system is a
point, a circle, a 2-torus, or a heteroclinic cycle. In both of these cases the
existence of the foliation suggests that the system cannot be chaotic.

Let G be a Lie group and Γ : G×M →M be an action of G on M . This
group action generates a (possibly singular) foliation whose leaves are the
group orbits Γ(G, x). The vector field

X = Xtan +Xinv

is foliate, where Xtan is tangent to the leaves, and Xinv is G-invariant. We
give two important classes of Lie group foliate vector fields.

Example 26. (Natural action) Let G ⊂ GL(n) be a matrix group with
its natural action on R

n×k,

Γ(A,L) = AL, A ∈ G, L ∈ R
n×k.

The ODEs

L̇ = f(L)L+ g(L)

are foliate, where f : R
n×k → g (f(L)L is tangent to the leaves) and g :

R
n×k → R

n×k with g(AL) = g(L) for all A ∈ G (g is invariant). The second
term can be written as a function of the invariants of the action, if these are
known. For example, for G = SO(n) we can write g(L) = h(LTL) and for
G = SL(n) we have g(L) = h(detL).

Example 27. (Adjoint action) This generalizes the ‘isospectral’ systems
studied in Lie group integrators (Iserles et al. 2000, Calvo, Iserles and
Zanna 1997) and elsewhere. Let G be a matrix Lie group, let M = g,
the Lie algebra of G, and let G1 be a subgroup of G which acts on M by
adjoint action, that is,

Γ(U,L) = ULU−1, U ∈ G1, L ∈ g.

The ‘isospectral manifolds’ of g are the sets of matrices similar by an element
of GL(n), while the leaves of the foliation defined by this group action are
the sets of matrices in g which are similar by an element of G1, and hence
are submanifolds of the isospectral manifolds.
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The ODEs
L̇ = [f(L), L] + g(L),

f : g → g1,

g : g → g, g(ULU−1) = Ug(L)U−1 ∀U ∈ G1

are foliate. For example,

g(L) = p(L)h(trL, trL2, . . . , trLn)

is adjoint invariant, where p is an analytic function and h : R
n → R.

The decomposition X = Xtan + Xinv gives a way of constructing foliate
integrators by splitting: Xtan can be integrated by any integrator for vector
fields on homogeneous spaces (Munthe-Kaas and Zanna 1997), and Xinv by
any symmetry-preserving integrator (Section 3.10).

Second, each piece may be decomposed further. This is always possible
for Xtan, on choosing a basis for the relevant Lie algebra.

3.10. Systems with symmetries

The vector field X has symmetry S : M →M if

(TS.X)S−1 = X. (3.7)

The map ϕ has symmetry S if

SϕS−1 = ϕ. (3.8)

If X satisfies (3.7), its flow satisfies (3.8).
There are few general results on preserving nonlinear symmetries (with

the exception of Dorodnitsyn (1996)). Here we shall restrict ourselves to
linear and affine symmetries.

Theorem 11. (Linear symmetries) Linear (and affine) symmetries are
preserved by all Runge–Kutta methods.

This theorem has several corollaries:

(1) if one just wishes to preserve a linear/affine symmetry group, one can
use any explicit Runge–Kutta method;

(2) if one wishes to preserve a linear/affine symmetry group plus (con-
stant) symplectic structure, one can use any symplectic Runge–Kutta
method;

(3) if one wishes to preserve a linear/affine symmetry group plus some
other geometry property, one is restricted to using splitting and/or
composition.

In a symmetry-preserving composition method, all vector fields that one
splits into should be invariant under the entire symmetry group one is inter-
ested in (this contrasts with the case of reversing symmetries (McLachlan,
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Quispel and Turner 1998)). The possible implementation of point 3 above
hence rests on the following result.

Theorem 12. Let G be a diffeomorphism group, let X be its Lie algebra,
let X ∈ X, and let G ⊂ G be a finite symmetry group. Let

X̃ =
∑

Si∈G
(TS.X)S−1

i . (3.9)

Then X̃ ∈ X, and X̃ is invariant under G.

We will use Theorem 12 as follows. Assume, for example, that we want
to construct a volume-preserving and symmetry-preserving integrator for a
given vector field (i.e., G is the group of volume-preserving diffeomorph-
isms.) First assume that we can split off a simplest possible divergence-free
vector field X for which we know how to construct a G-integrator, without
worrying about symmetries. Then X̃ will be divergence-free and preserve all
the given symmetries. The problem, however, is whether we will be able to
construct a volume-preserving symmetry-preserving integrator for X̃. The
two following examples show that, although this will sometimes be the case,
in general it will not be.

Example 28. (The AAC flow) The AAC flow is a special case of the
ABC flow (1.6) given by B = A, that is,

ẋ = A sin z + C cos y, ẏ = A sinx+A cos z, ż = C sin y +A cos z.

Its symmetry group is generated by

S1 : (x, y, z) 7→ (−x, π − y, z − π),

S2 : (x, y, z) 7→ (3π
2 + z, π2 − y, x− 3π

2 ).
(3.10)

We start with the simplest divergence-free building block we can think of,

X1 : ẋ = A sin z, ẏ = 0, ż = 0.

Applying Theorem 12 to X1, we see that it is already invariant under S1, so
(ignoring S1) we get

X̃1 : ẋ = A sin z, ẏ = 0, ż = A cosx.

So far so good, because X̃1 can be integrated while preserving volume and
the symmetries S1 and S2, by using the implicit midpoint rule.

To further build up X, the next simple divergence-free building block we
start with is

X2 : ẋ = C cos y, ẏ = 0, ż = 0.

Applying Theorem 12 again, we get

X̃2 : ẋ = C cos y, ẏ = 0, ż = C sin y.



382 R. I. McLachlan and G. R. W. Quispel

Again we are in luck, because X̃2 can also be integrated using the implicit
midpoint rule. Finally, starting from

X3 : ẋ = 0, ẏ = A sinx, ż = 0,

we obtain

X̃3 : ẋ = 0, ẏ = A sinx+A cos z, ż = 0,

which is integrated exactly by Euler’s method. Noting that X = X̃1 + X̃2 +
X̃3, composing these integrators yields a volume-preserving and symmetry-
preserving integrator for the AAC flow.

Example 29. (The AAA flow) We now consider the ABC flow (1.6)
with C = B = A. In addition to the symmetries S1 and S2 in (3.10), this
flow has the cyclic symmetry

S3 : (x, y, z) 7→ (y, z, x).

We start again from

X1 : ẋ = A sinx, ẏ = 0, ż = 0.

But if we now apply Theorem 12, we find that X̃1 = X, i.e., this procedure
does not allow us to splitX into simpler parts. Indeed, as far as we know, it is
currently not known whether a volume- and symmetry-preserving integrator
for the AAA flow exists.

For continuous symmetry groups G, the ODE preserves the foliation given
by the orbits of G (see Example 11). The sum in Theorem 12 becomes an
integral. Luckily, in many cases, natural splittings do preserve symmetries.
For example, in the Hamiltonian case with H =

∑
Hi, each Hi should

be G-invariant. This occurs with with 1
2p

TM(q)p + V (q) splitting when G
acts by cotangent lifts, as, e.g., rotational and translational symmetries do.
Similarly, if the action of G is linear, then a splitting of X into homogeneous
parts preserves G.

3.11. Systems with reversing symmetries

The vector field X has reversing symmetry R : M →M if (Lamb 1998)

(TR.X) ◦R−1 = −X. (3.11)

The map ϕ has reversing symmetry R if

R ◦ ϕ ◦R−1 = ϕ−1. (3.12)

(Note that (3.11) is the linearization of (3.12).) If X satisfies (3.11), its flow
satisfies (3.12). One reason it is important to preserve reversing symmetries
of a system is because (just as in the case of Hamiltonian and divergence-
free vector fields) such systems have KAM theorems (Broer et al. 1996)
guaranteeing the existence of stabilizing tori in phase space.
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The combined set of all symmetries and reversing symmetries of a vec-
tor fields forms a group, called its reversing symmetry group. While the
set of diffeomorphisms preserving a given symmetry group forms a group,
discussed in Section 3.10, the set of diffeomorphisms preserving a given
reversing symmetry group does not form a group: it is not closed under
composition. However, it does form a symmetric space.

Definition 4. A symmetric space3 is a (discrete or continuous, finite-dim-
ensional or infinite-dimensional) subset S of a group G such that

ϕψ−1ϕ ∈ S ∀ ϕ,ψ ∈ S.

A Lie triple system is a subspace t of a (finite- or infinite-dimensional) Lie
algebra g such that

[X, [Y,Z]] ∈ t ∀ X,Y, Z ∈ t.

The linearization of a continuous symmetric space S is a Lie triple system
t, and exp(t) ⊂ S. Clearly one would like to know all the symmetric spaces
contained in a given group of diffeomorphisms.

It can be shown that the reversing symmetry group of a given system,
if nontrivial, can be generated by the group of symmetries plus a single
arbitrarily chosen reversing symmetry (Lamb 1998). This means that, if
a system has a number of geometric properties plus a reversing symmetry
group, then we can alternatively think of it as possessing the geometric
properties plus a symmetry group, plus a single reversing symmetry, as
follows.

Theorem 13. Let G be a group of diffeomorphisms, let SG be the set of
diffeomorphisms preserving the reversing symmetry group G, let S ⊂ G be
the symmetries in G, and let R ∈ G be any one of the reversing symmetries.
Then

G ∩ SG = G ∩ SS ∩ SR.

This will enable us to construct G∩SG-integrators, i.e., integrators that
lie in G and preserve the whole reversing symmetry group G.

Theorem 14. (Nonlinear reversing symmetries) Let ϕ ∈ G ∩ SS ,
and let the reversing symmetry R be an element of G. Then the method

χ := ϕRϕ−1R−1

satisfies

χ ∈ G ∩ SG,

that is, it is a G-integrator and preserves the whole reversing symmetry
group G.

3 A more abstract definition is given in Loos (1969).
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Proof. Obviously χ ∈ G. Let R̃ be any reversing symmetry in G. Then

R̃χR̃−1 = R̃ϕRϕ−1R−1R̃−1

= R̃ϕRR−1R̃−1ϕ−1, since R−1R̃−1 ∈ GG,

= R̃ϕR̃−1RR−1ϕ−1

= R̃R̃−1RϕR−1ϕ−1, since R̃−1R ∈ GG,

= RϕR−1ϕ−1

= χ−1.

So any R̃ ∈ G is a reversing symmetry of χ. Since G is generated by its
reversing symmetries (Lamb 1998), this completes the proof. �

This theorem implies that, provided R ∈ G, we do not need to worry
about preserving reversing symmetries while we are constructing a geomet-
ric integrator; they can be incorporated at the final stage. In splitting, it
is sufficient to seek a splitting X =

∑
Xi with Xi preserving the group

properties, that is, exp(Xi) ∈ G and Xi has symmetry group S, form an
integrator from them, and then apply the theorem. Note, however, that if it
does happen that Xi has reversing symmetry R and we start with the basic
composition (1.1), then we get

χ = exp(τX1) . . . exp(τXn) exp(τXn) . . . exp(τX1),

that is, the factors of R all cancel. This is the case in the canonical Ex-
ample 1: X = XT + XV , R : (q, p) 7→ (q,−p), and XT and XV are both
R-reversible. That is, the leapfrog–Verlet method is reversible.

Note that the above theorem is also true in the case that ϕ is symplectic
and R is antisymplectic.

Theorem 15. (Linear reversing symmetries) Linear (and affine) re-
versing symmetries are preserved by all self-adjoint Runge–Kutta methods.
These also preserve all linear (and affine) symmetries (which are preserved
by all Runge–Kutta methods).

The fact that all self-adjoint Runge–Kutta methods are implicit implies
that explicit splitting methods are preferred if available.

3.12. Splitting for polynomial vector fields

The first splitting methods for Hamiltonian polynomial vector fields were
based on splitting into monomials (Channell and Neri 1996). For example,
Shi and Yan (1993) partitions the monomials of degree 3, 4, 5, and 6 in
6 variables into 8, 20, 42, and 79 sets, so that the monomials in each set
commute. Here we present a new, more efficient method using a different
set of basis functions, which has the additional advantage of avoiding the
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singularities that are associated with monomial splitting. Our starting point
is the following result.

Theorem 16. For each m, there exists an N and vectors k1, . . . , kN ∈ R
n

such that the set
{(kT

i x)
m, 1 ≤ i ≤ N} (3.13)

forms a basis for the homogeneous polynomials of degree m in R
n. The ki

can be chosen so that some subset of the functions {(kT
i x)

p} forms a basis
for the homogeneous polynomials of degree p < m.

That is, if P is any polynomial, P (x) =
∑

m

∑N
i=1 aim(kT

i x)
m where the

aim (but not the ki) depend on P ; any polynomial in n variables is a sum of
polynomials in one variable. The proof is given in Appendix B. Note that
N and the ki can be constructed explicitly.

This result allows us, for example, to construct explicit splittings for Ham-
iltonian and volume-preserving systems. In the Hamiltonian case, we get

H =
N∑

i=1

Hi, Hi =
∑

m

aim(kT
i x)

m.

Hence

XHi
= J∇Hi(x) = JkT

i

∑

m

maim(kT
i x)

m−1.

Since kT
i x is a first integral for XHi

, the exact flow of XHi
is given by Euler’s

method. Note that, unlike monomial splitting, this splitting also yields
explicit geometric integrators for Poisson systems with constant Poisson
tensor J .

In the divergence-free case, we expand each function Sij appearing in the
representation (3.2) of divergence-free systems. This gives us the following.

Theorem 17. Let X be a polynomial divergence-free vector field. Then

X =
∑

i

Xi(k
T
i x),

where each Xi is divergence-free and has integral kT
i x. The exact flow of

each Xi is given by Euler’s method.

Note that, since the pieces here are all volume-preserving, this approach
can only be used for the volume-preserving group and its subgroups.

3.13. Splitting for trigonometric vector fields

Every generalized trigonometric polynomial vector field X on R
n can be

written in the form (Quispel and McLaren 2002) X =
∑
Xi, where

Xi(x) = ci sin(kT
i x) + di cos(kT

i x) (3.14)
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for certain constant vectors ci, di, ki ∈ R
n.

We now consider two cases: the volume-preserving case, and the Hamilto-
nian case.

(1) The volume-preserving case

From the fact that X is divergence-free it follows that

∇ ·X =
∑

i

kT
i ci cos(kT

i x) − kT
i di sin(kT

i x) = 0, (3.15)

and hence, from linear independence,

kT
i ci = kT

i di = 0 for all i. (3.16)

Thus each vector field Xi has

d

dt
(kT

i x) = kT
i Xi = 0,

that is, has integral kT
i x and is integrated exactly using Euler’s method:

exp(tXi)(x(0)) = x(0) + tXi(x(0)). (3.17)

(2) The Hamiltonian case

We get the Hamiltonian case for free. If X is Hamiltonian, all Xi in
(3.14) must also be Hamiltonian, and hence their exact flow (3.17) must
be symplectic. So if X is Hamiltonian, the method above automatically
yields a symplectic integrator!

3.14. Examples

Lotka–Volterra equations

Many well-known families of ODEs may have no special structure in general
but contain within them interesting special cases which do have extra struc-
ture. We illustrate this for Lotka–Volterra systems, which arise in biology
and in economics (Volterra 1931). They have the general form

ẋi = xi

(
λi +

n∑

j=1

aijxj

)
, i = 1, . . . n.

In the domain xi > 0 we can put ui := log xi, to get

u̇i = λi +
n∑

j=1

aije
uj

or

u̇ = λ+Aeu. (3.18)
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Each Lotka–Volterra system falls into one or both of the following cases:

(1) λ ∈ range(A);

(2) rank(A) < n.

In case (1), λ ∈ range(A), we can rewrite (3.18) in linear-gradient form
(McLachlan et al. 1999):

u̇ = A∇V (u), (3.19)

with V (u) =
∑

i e
ui + ciui. Some special cases are:

(i) if A is symmetric positive definite, (3.19) is a gradient system;

(ii) if A + AT is negative definite (Volterra 1931), (3.19) has V as a Lya-
punov function;

(iii) if A is antisymmetric, (3.19) is either a Hamiltonian system (if rank(A)
= n) or a Poisson system (if rank(A) < n);

(iv) if Aii = 0 for all i (3.19) is divergence-free (Volterra 1931).

In cases (i) and (ii), splitting methods may not be the methods of choice,
and we may prefer to use linear-gradient methods (McLachlan et al. 1999).
Cases (iii) and (iv) are ideal for splitting. We split X =

∑n
i=1Xi where

Xi = A∇(eui + ciui).

In case (iii) each Xi is Hamiltonian (or Poisson), and in case (iv) each
Xi is divergence-free. The Xi will also preserve any Casimirs of A when
rank(A) < n. The exact flow of each Xi is given by Euler’s method.

In case (2), when rank(A) < n, let wT
i , i = 1, . . . , l, be the left zero

eigenvectors of A. It follows from (3.18) that

wT
i u̇ = wT

i λ,

which can be integrated to

wT
i u(t) = wT

i u(0) + twT
i λ.

Now suppose wT
i λ = 0 for i = 1, . . . , k and wT

i λ 6= 0 for i = k + 1, . . . , l.
The first k functions wT

i u are integrals (specifically, Casimirs of A). If k < l
then the system has a codimension one foliation with leaves wT

l u = const
and l − k − 1 extra integrals (Casimirs)

(wT
i λw

T
l − wT

l λw
T
i )u, i = k + 1, . . . , l − 1.

Because the integrals and foliation are linear, they are preserved by the
Runge–Kutta method (McLachlan, Perlmutter and Quispel 2002).
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Similarity reductions of PDEs

Conformal volume-preserving ODEs (and their subgroup of conformal Ham-
iltonian ODEs) commonly arise as similarity reductions of PDEs. This can
happen in at least two ways:

(1) travelling wave reductions of PDEs that are linear in the two highest
(mixed) derivatives;

(2) spherically symmetric reductions of PDEs involving a Laplacian.

We illustrate each of these with a couple of examples.

Example 30. (Reduction of reaction–diffusion equations) Typically
reaction–diffusion equations (Murray 1989) have the form

ut + ∇2u+ f(u) = 0, u : R
m+1 → R

n. (3.20)

They admit solutions depending on the travelling wave variable ξ := aTx−ct.
Inserting this, we obtain

uξ = v, vξ = |a|−2cv − f(u).

This ODE has constant divergence nc‖a‖−2. Note that stationary solutions
(i.e., c = 0) correspond to a divergence-free ODE. A simple splitting is
X = X1 +X2, where

X1 : uξ = 0, vξ = −c‖a‖−2v + f(u),

X2 : uξ = v, vξ = 0.

Example 31. (Fourth-order PDEs) Equations of the form

ut + uxxxx + αuxx + βu+ γu2 + δu3 + ε(ux)
2 = 0, u : R

2 → R,

where α, β, γ, δ, ε are parameters, describe a variety of physical systems. Two
special cases are (i) β = 1, the evolution of a gas flame front (Malomed and
Tribelsky 1984), and (ii) γ = ε = 0, the Swift–Hohenberg equation (Swift
and Hohenberg 1989). The travelling wave reduction u(x, t) = u(x − ct)
yields

uξ = v, vξ = w, wξ = z, zξ = cv − αw − βu− γu2 − δu3 − εv2.

This ODE is divergence-free for any choice of the parameters. For c =
0 (stationary solutions) it also has the reversing symmetry (u, v, w, z) 7→
(u,−v, w,−z) (Roberts and Quispel 1992). For c = ε = 0, the system has
an additional Hamiltonian structure


uξ
vξ
wξ

zξ


 =




0 0 0 1
0 0 −1 0
0 1 0 −α
−1 0 α 0


∇f,

where f(u, v, w, z) =
1

2
βu2 +

1

3
γu3 +

1

4
δu4 + vz − 1

2
w2 +

1

2
αv2.
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For γ = ε = 0 there is an additional symmetry (u, v, w, z) 7→ −(u, v, w, z).
A simple splitting which preserves all of these structures is X = X1 +X2,
where

X1 : uξ = v, vξ = 0, wξ = z, zξ = 0,

X2 : uξ = 0, vξ = w, wξ = 0, zξ = cv − αw − βu− γu2 − δu3 − εv2.

Example 32. (Poisson equations) Poisson equations have the form

∇2u+ f(u) = 0.

Note that this is identical to the stationary form of the reaction–diffusion
equation (3.20). Introducing the radial variable r := (

∑
x2
i )

1/2 and looking
for spherically symmetric solutions, we get

ur = v, vr =
1 −m

r
v − f(u).

This ODE has constant divergence (i.e., independent of u and v) equal to
n(1 −m)/r, i.e., its flow is conformal volume-preserving (with a conformal
constant depending on the independent variable r). If f(u) = ∇H(u), i.e.,
if the Poisson equation is variational, then the reduced ODE is conformal
Hamiltonian.

Example 33. (Stationary NLS equation) The nonlinear Schrödinger
equation is given by

iψt + ∇2ψ + c|ψ|2ψ = 0.

Stationary spherically symmetric solutions satisfy

ψrr +
m− 1

r
ψr + c|ψr|2ψ = 0.

Defining q1 + iq2 := ψ and p1 + ip2 := ψr, we obtain

qr = p, pr =
1 −m

r
p− 1

2
∇((q21 + q22)

2).

This ODE is conformal Hamiltonian and can be integrated using the splitting
method of Section 3.6.

4. Composition

As only a small fraction of the possibilities to apply the product formula philosophy
have been explored, there is much room for further research in this field. I hope that
this will encourage the reader to apply the symmetric product formula approach to
solve other problems or develop new and more efficient algorithms than the ones
proposed in this paper. (De Raedt 1987)

4.1. General theory

The fundamental basis of composition methods is the following. Note that
the two methods ϕ, ψ need not be flows, and can be completely unrelated.
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Theorem 18. Let ϕ be a consistent integrator forX1, let ψ be a consistent
integrator for X2, and let X1 be Lipschitz-continuous. Then ϕ ◦ ψ is a
consistent integrator for X1 +X2.

The composition of flows (1.1) is only first-order. The order can be in-
creased by including more exponentials in a time step. For a splitting into
two parts, X = A+B, we have the general nonsymmetric composition

eamτAebmτB . . . ea1τAeb1τBea0τA. (4.1)

By convention, we only count the evaluations of the flow of B, and refer to
(4.1) as an m-stage method. The number of stages and the coefficients ai
and bi are to be chosen to ensure that the method has some order p, that is,

ϕ = exp(τ(A+B)) + O(τp+1).

At least four approaches have been proposed to determine order conditions
for the coefficients of methods of high order. The first, very simple, method,
works only for a special class of compositions, so it does not always generate
the best method of a given order. The other three produce the general order
conditions, large systems of polynomials which have to be studied in detail
to select methods. They are either reduced and/or solved symbolically if m
is small enough, or solved numerically.

(1) The direct method of Suzuki (1990) and Yoshida (1990), which easily
produces methods of any even order.

(2) Expansion of (4.1) using the BCH formula (4.7), which gives the order
conditions for an m-stage method recursively in terms of those for an
(m− 1)-stage method.

(3) An extension of the theory of rooted trees used in Runge–Kutta theory
to composition methods (Murua and Sanz-Serna 1999), which gives the
order conditions explicitly.

(4) A method based on time-ordered symmetrized products of noncom-
muting operators (Tsuboi and Suzuki 1995), which also gives the order
conditions explicitly.

We shall present methods (1) and (2) and their extensions.
We start with two facts. First, any map sufficiently close to the identity

is close to the flow of some vector field. Specifically, we have the following
theorem.

Theorem 19. (Modified equations, backward error; Reich (1999))
Let G be a set (e.g., a group) of diffeomorphisms which has a tangent at the
identity given by a linear space X of vector fields. Let ϕ(τ) be a curve in
G, analytic in τ , satisfying ϕ(0) = 1, the identity. Then there exist vector
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fields X1, X2, X3, · · · ∈ X such that

ϕ(τ) = exp

(
N−1∑

n=1

τnXn

)
+ O

(
τN
)

for all N > 1. (The error can be taken in any coordinate chart.)

Note that ϕ(τ) is an integrator of X1 of order p, where p ≥ 1 is the least
integer such that Xp+1 6= 0.

Second, let X be a Lie algebra of vector fields and let X,Y ∈ X. Then

eXeY = eX+Y +o(X,Y ). (4.2)

(The first term in the remainder is 1
2 [X,Y ], but we shall not need this term

until the next section.)

Definition 5. The method ϕ(τ) is symmetric or self-adjoint if

ϕ(τ)ϕ(−τ) = 1

for all τ .

Then we have the following.

Theorem 20. If ϕ(τ) is symmetric, then X2i = 0 for all i, and ϕ(τ)
necessarily has even order.

It is easy to find symmetric methods, as follows.

Theorem 21. If ϕ(τ) is any method of order p, then ϕ(1
2τ)ϕ

−1(−1
2τ) is

symmetric and of order at least p (if p is even) or at least p+1 (if p is odd).

Applied to the basic composition (1.1), Theorem 21 leads to the symmet-
rized composition of order 2,

e
1
2 τX1 . . . e

1
2 τXne

1
2 τXn . . . e

1
2 τX1 , (4.3)

which is widely used in many applications: for many purposes it is the most
sophisticated method needed. From the flow property eτXeσX = e(τ+σ)X ,
the two central stages coalesce, and the last stage coalesces with the first
stage of the next time step. When output is not required every time step,
the method (4.3) therefore involves evaluating 2n − 2 flows, or 2 − 2/n as
much as the first-order method (1.1). This shows the great advantage in
searching for splittings with a small number (say 2 or 3) parts.

Applied to the general nonsymmetric composition (4.1), Theorem 21 gen-
erates symmetric methods which we denote ϕS.

Theorem 22. Let ϕ(τ) be a symmetric method of order 2k > 0. Then
the method

ϕ(ατ)nϕ(βτ)mϕ(ατ)n (4.4)
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is symmetric. It has order 2k + 2 provided

2nα+mβ = 1,

2nα2k+1 +mβ2k+1 = 0.

These equations have a unique real solution for all n, m, and k, namely

α =
(
2n− (2nm2k)1/(2k+1)

)−1
, β = (1 − 2nα)/m. (4.5)

Proof. By Theorem 19, we have ϕ(τ) = exp(τX1+τ
2k+1X2k+1+O(τ2k+3)).

So ϕ(ατ) = exp(ατX1+α
2k+1τ2k+1X2k+1+O(τ2k+3)). Equations (4.5) then

follow from (4.2). �

Counting the basic second-order symmetric method as one stage, with
m = n = 1 this approach uses 3 stages for a 4th-order method, 9 stages for
6th-order, and so on, or 3p/2−1 = O

(√
3
p)

stages for order p.
It has been found that it is always best to take m = 1, but the best choice

of n is not so clear. The shortest methods, with n = 1, in fact have notably
large error constants. One recent study (McLachlan 1995) found that, for
order 4 methods, the work to achieve a given error actually decreased with
n right up to n = 19. Without going into details, one can say that the order
4 methods with m = 1 and n = 2 (5 stages) or n = 3 (7 stages) are good.

It will be observed from (4.5) that β < 0 for all n, m, and k. The methods
always involve stepping backwards in time. We shall see below that this is
unavoidable. However, for geometric integrators in groups, it is of course
not a problem. In semigroups, as arise, for instance, in dimensional splitting
of diffusion equations, it is a problem. There, splitting was proposed as a
cheap way to retain unconditional stability. Methods with backwards time
steps can only be conditionally stable; this stumbling block held up the
development of high-order compositions for years.

To get methods with fewer stages, Yoshida (1990) and Suzuki (1990)
proposed the composition

ϕ(a1τ) . . . ϕ(amτ) . . . ϕ(a1τ), (4.6)

where ϕ(τ) is any symmetric method. (We call (4.6) type SS, symmetric
with symmetric stages.) To analyse such methods, the approximation (4.2)
is no longer enough, as we need to keep track of all higher-order terms in
the expansion, up to the order of the method. This is provided by the
Baker–Campbell–Hausdorff (BCH) formula.

Theorem 23. (BCH) Let X be a Lie algebra of vector fields and let
X,Y ∈ X. Then

eXeY = eZ ,
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where Z is given by the following series, which is asymptotic as X, Y → 0:

Z =
∞∑

n=1

Zn = X + Y + 1
2 [X,Y ] + 1

12([X,X, Y ]

+ [Y, Y,X]) + 1
24 [X,Y, Y,X] + · · · ,

Z1 = X + Y,

(n+ 1)Zn+1 = 1
2 [X − Y,Zn] (4.7)

+

⌊n/2⌋∑

p=1

B2p

(2p)!

∑

k1,...,k2p

ki≥1,
∑

ki=n

[Zk1
, . . . , Zk2p

, X + Y ], n ≥ 1,

where Bj is the jth Bernoulli number and we have defined [X,Y, Z] :=
[X, [Y,Z]].

That is, the composition of two flows is itself the flow of the vector field Z,
which lies in the same Lie algebra asX and Y (e.g., Hamiltonian, divergence-
free) and is a linear combination of X, Y and all their iterated Lie brackets.
Note that Zn ∈ Ln(X,Y ), the linear span of all Lie brackets of order n of
X and Y . Let

cn := dimLn(X,Y ).

Let us first consider applying the BCH formula to the general composition
(4.1). Taking X = aiτA, Y = biτB, an element of Ln(X,Y ) is O(τn).
Therefore, applying the BCH formula repeatedly to (4.1) gives

ϕ = exp

( ∞∑

n=0

knτ
nLn(A,B)

)
,

where the coefficients kn(a1, . . . , b1, . . . ) ∈ R
cn are cn polynomials in the

variables ai and bi. The conditions k1 = (1, 1) (so that the first term is
τ(A + B) as required) and kn = 0 for all n ≤ p are then sufficient for
the method to have order p. In practice, for large p the order conditions
are usually calculated symbolically, for example, using the Matlab package
DiffMan found at www.math.ntnu.no/num/diffman.

For example, one can check directly that

e
1
2 τAeτBe

1
2 τA = eτ(A+B)+

1
12 τ

3[B,B,A]− 1
24 τ

3[A,A,B]+O(τ5), (4.8)

showing that this method is order 2, because the error term in τ2[A,B]
vanishes. When applied to Hamiltonian systems with H = 1

2p
2 + V (q) and
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choosing A = X1
2p

2
, B = XV (q) as in Example 1, we get the method

Q = qn + 1
2τpn,

pn+1 = pn − τ∇V (Q),

qn+1 = Q+ 1
2τpn+1,

which for the q variables is equivalent to the Delambre–Verlet method (1.3).
By extension, we refer to the method (4.8) as leapfrog regardless of A and B.

Similarly, when composing an arbitrary method ϕ(τ) = exp(τX1+τ2X2+
τ3X3 + · · · ), we will be working in the Lie algebra L(X1, X2, X3 . . . ), and
when composing a symmetric method (type SS, (4.6)) in the Lie algebra
exp(τX1 + τ3X3 + τ5X5 + · · · ). Before giving specific integration methods
in Section 4.9, we will detour to study these Lie algebras a little.

4.2. Equivalence of methods

It is also possible to consider, following the previous section, three more
general compositions, not of flows as in (4.1), but of arbitrary methods.
First, we have a nonsymmetric composition of an arbitrary method ϕ(τ)
and its inverse, such as

ψNS :=
m∏

i=1

ϕ−1(−ciτ)ϕ(diτ). (4.9)

Expanding ϕ(τ) = exp(X1 + X2 + X3 + · · · ), where Xi = O
(
τ i
)
, we see

that ψNS has an expansion in L(X1, X2, X3, . . . ). For example, there will
be 2 order conditions at order 3, corresponding to the coefficients of X3 and
[X1, X2]. Using Theorem 25 below, one can show that there are cn order
conditions at order n > 1, just as for the composition (4.1).

Second, a symmetric composition ψS with ci = dn+1−i, i = 1, . . . , n. There
are still cn order conditions at order n, but only the odd order conditions
need to be enforced, from Theorem 20.

Third, a symmetric composition ψSS of symmetric methods, (4.6), or (4.9)
with ci = cn+1−i = di = dn+1−i, i = 1, . . . , n. Expanding ϕ(τ) = exp(X1 +
X3 + X5 + · · · ), we see that ϕ(SS has an expansion in L(X1, X3, X5, . . . ).
(There is now only one order condition at order 3.)

Recall also the general composition

ϕNS = eamτAebmτB . . . ea1τAeb1τBea0τA, (4.10)

the symmetric composition

ϕS = ea0τAeb1τB . . . ea1τAeb1τBea0τA, (4.11)

(i.e., ai = an−i, bi = bn+1−i), and ϕSS, the symmetric composition of
leapfrog stages.

However, these classes of methods are in fact equivalent.
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Theorem 24. (McLachlan 1995, Koseleff 1995) If, for i = 1, . . . ,m,
we have

di + ci = bi, di+1 + ci = ai

(setting dm+1 = c0 = 0), then the methods ψNS, ψS, and ψSS order p ≥ 1 if
and only if the methods ϕNS, ϕS, and ϕSS, respectively, have order p.

Proof. One direction is trivial: a method of order p of type ψNS,S,SS, im-
mediately gives a method of order ≥ p of type ϕNS,S,SS, on taking ψ(τ) =
eτBeτA. The other direction for the nonsymmetric case NS is proved in
McLachlan (1995); we illustrate it here for the conditions at order 2 and 3.
Consider finding the order conditions for (4.10) by expressing (4.10) as (4.9)
with ϕ(τ) = eτBeτA (so that the coefficients ai, bi, ci, and di are related as in
the hypothesis of the theorem). Then ϕ(τ) = exp(τX1 +τ2X2 +τ3X3 + · · · )
with X1 = A+ B, X2 = 1

2 [B,A], X3 = 1
12([B,B,A] + [A,A,B]) and so on,

from the BCH formula (4.7). At order 2, the coefficient of 1
2 [B,A] in (4.10)

is then the same as the coefficient of X2 in (4.9). At order 3, observe that

[X1, X2] = 1
2([B,B,A] − [A,A,B]).

Thus, the two order conditions p1 = p2 = 0 for (4.9) are related to the two
order conditions q1 = q2 = 0 for (4.10) by

p1 = 1
2(q1 − q2), p2 = 1

12(q1 + q2).

So p1 = p2 = 0 if and only if q1 = q2 = 0. A similar pattern follows at each
order, since from Theorem 25, dimLn(A,B) = dimLn(X1, X2, X3, . . . ) for
n > 1. The S and SS cases follow from the symmetries of the coefficients of
the methods. �

4.3. Counting order conditions

We have seen that, for methods formed from compositions of flows of the
vector fields Xi, there is one order condition for each linearly independent
Lie bracket of the Xi. Defining the orders w(X) by X = O

(
τw(X)

)
, we have

w([X,Y ]) = w(X) +w(Y ): the powers of τ add when forming Lie brackets.
(The function w is called a grading of L(X1, X2, . . . ).) Let Ln(X1, X2, . . . )
be the linear span of all Lie brackets of the Xi of order n. The dimension of
this space (i.e., the number of order conditions of order n), is provided by
the following theorem.

Theorem 25. (Munthe-Kaas and Owren 1999, Kang and Kim 1996)
Let p(T ) = 1 −

∑
i T

w(Xi) and let log(p(T )) =
∑∞

n=0 anT
n. Then

dimLn(X1, X2, . . . ) =
∑

d|n
µ(d)an/d,

where µ(d) is the Möbius function µ(1) = 1, µ(d) = (−1)q if d is the product
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of q distinct prime factors, and µ(d) = 0 otherwise. Thus, if p(T ) converges
to a rational function q(T )/r(T ), then

dimLn(X1, X2, . . . ) =
1

n

∑

d|n
µ(d)

((
∑

j

λ
−n/d
j

)
−
(
∑

k

ρ
−n/d
k

))
,

where the λj are the roots of q(T ) and the ρk are the roots of r(T ).

We will consider various cases. First, for compositions of the flows of two
vector fields A and B, we take X1 = τA (order 1) and X2 = τB (order 1),
to get p(T ) = 1 − 2T and λ = 1

2 , so

cn := dimLn(A,B) =
1

n

∑

d|n
µ(d)2n/d = O

(
2n

n

)
,

which is known as the Witt formula, one of many similar formulae counting
polynomials, partitions, trees, exterior products, etc. The first 10 values of
cn are given in Table 4.1.

For order p type NS methods (4.10), this gives a total of
∑p

n=1 cn =
O(2p/p) order conditions. For type S methods (4.11), the even order con-
ditions are automatically satisfied (Theorem 20), so the number is reduced

to
∑p/2

k=1 c2k−1: still O(2p/p), but the largest single set of cp conditions is
avoided.

For type SS methods (4.6), we compose flows of ϕ(τ) = exp(X1 + X3 +
X5+· · · ), where w(Xi) = i. For example, a basis for the 4-dimensional space
of brackets of order 7 is {X7, [X1, X1, X5], [X1, X1, X1, X1, X3], [X3, X1, X3]}.
Applying Theorem 25, p(T ) = 1 − T − T 3 − T 5 − · · · = 1 − T/(1 − T 2) =
(1 − T − T 2)/(1 − T 2), so λ1 = (

√
5 + 1)/2, λ2 = (

√
5 − 1)/2, ρ1 = 1,

ρ2 = −1. Crucially, dimLn(X1, X3, . . . ) = O(λn1/n), λ1 ≈ 1.618, and the
asymptotic rate of growth has been reduced – compare the first 10 values
given in Table 4.1.

Recall that the Yoshida–Suzuki methods (4.4) have O
(√

3
p)

stages. Thus,
type SS methods are sure to beat them for sufficiently high orders p.

However, one can do even better. Consider compositions of symmetric
4th order methods. Then we require dimLn(X1, X5, X7, . . . ), for which
p(T ) = 1−T 5−T 7−· · · = (1−T −T 2 +T 3−T 5)/(1−T 2) and λ1 ≈ 1.4433.
The number of stages for an order p method of this type is O(λp1/p). This
is asymptotically smaller than type SS methods, although the break-even
value of p = 12 is rather large.

Contrast the present situation with that of Runge–Kutta methods. They
have one order condition for each elementary differential (f , f ′(f), f ′′(f, f),
f ′(f ′(f)), . . . ) of order n. The number of these grows extremely quickly:
O(n−3/2λn) where λ ≈ 2.995 is Otter’s tree enumeration constant. However,
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Table 4.1. Number of order conditions.
(a) Number of conditions arising at each order: cn = dimLn(A,B),
dn = dimLn(X1, X3, X5, . . . ), and en = dimLRKN

n
(A,B)

Order n cn (type NS) dn (type SS) en (type RKN)

1 2 1 2
2 1 0 1
3 2 1 2
4 3 1 2
5 6 2 4
6 9 2 5
7 18 4 10
8 30 5 14
9 56 8 25

10 99 11 39

(b) Total number of order conditions for methods of order 4, 6, and
8, with and without using correctors. For example, for SS methods
with correctors, the 5 order conditions are the coefficients of X1,
X3, X5, X7, and [X3, X1, X3] in the composition (4.6)

Type of method Order 4 Order 6 Order 8

NS 8 23 71
S 4 10 28
SRKN 4 8 18
SS 2 4 8
NS with corrector 4 10 31
S with corrector 3 6 15
SRKN with corrector 3 5 10
SS with corrector 2 3 5
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the structure of the order conditions is such that they can be satisfied with
many fewer stages than this, namely O(p) for implicit methods of order p
and O(p2) for explicit methods. Yet, by composing Euler and backward
Euler stages, they contain within them the order conditions for type NS, S,
and SS methods.

Choosing the actual number of stages to use is still something of an ex-
perimental art. Consider m-stage methods of order 6. Type SS methods
have 4 order conditions and (m+1)/2 parameters, suggesting m ≥ 7; type S
methods have 10 order conditions and m+1 parameters, suggesting m ≥ 9;
while type NS methods have 23 order conditions and 2m + 1 parameters,
suggesting m ≥ 11. However, suppose we decide to study 15-stage methods.
Then SS methods have 4 free parameters, S methods have 6 free paramet-
ers, and NS have 8 free parameters. True, the error in an SS method has
fewer independent components than the error in an S method, but this may
not be relevant when trying to minimize some norm of the error. Choosing
small m will favour type SS, while choosing larger m (which seems to lead
to better methods) will favour type S. On the other hand, there is an estab-
lished resistance from users, who may be used to using leapfrog with m = 1,
against methods with large m.

4.4. Stability

It might be expected that splitting methods, being nominally explicit, have
only modest stability. This is not necessarily the case.

(1) Because they are 1-step methods, they are automatically 0-stable (i.e.,
stable for ẋ = 0), unlike multistep methods. Moreover, unlike Runge–
Kutta methods, they do not require storage of extra values of X, which
is a great memory advantage when solving high-dimensional PDEs.

(2) If G is compact, then all G-integrators are unconditionally stable: you
can not go to infinity in a compact space. The most important examples
are unitary and orthogonal integrators (see Section 5.3), for which G

is a finite-dimensional compact Lie group.

(3) If the phase space is compact, all G-integrators are unconditionally
stable, e.g., integrators preserving the integral ‖x‖2.

(4) If G is noncompact, then most G integrators are only conditionally
stable. One chooses a simple test problem in G with bounded solutions
and computes the stability limit of various methods. For Hamiltonian
systems, this is usually the harmonic oscillator with T (p) + V (q) split-
ting. Leapfrog is stable for τ < 2 and higher-order m-stage integrators
are stable for τ < τ∗ where usually τ∗ ≈ π. Special compositions can
be found which are more stable. Typically τ∗ decreases with increasing
order, while τ∗/m increases slightly with m.
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(5) If M is a Banach space and the vector fields Xi are linear with

‖ exp(tXi))‖ ≤ 1, for all t ≥ 0,

then composition of flows of such Xi (or their stable approximations)
with positive time steps is unconditionally stable, for

∥∥∥
∏

exp(τiXi)
∥∥∥ ≤

∏
‖ exp(τiXi)‖ ≤ 1.

The main application is to dimensional splitting in parabolic PDEs such
as the heat equation (Strang 1968). However, this limits the order to
2, as Theorem 26 below shows.

(6) Again, if M is a Banach space and ϕ, ψ are linear operators on M with
‖ϕ‖ ≤ 1, ‖ψ‖ ≤ 1, then (De Raedt 1987)

‖ϕn − ψn‖ =

∥∥∥∥∥

n−1∑

i=0

ϕi(ϕ− ψ)ψn−1−i

∥∥∥∥∥

≤ ‖ϕ− ψ‖
n−1∑

i=0

‖ϕ‖i‖ψ‖n−1−i

≤ n‖ϕ− ψ‖.
That is, errors grow at most linearly in time. This applies for all com-
positions if G is, e.g., the linear action of U(n) on C

n (see Section 5.3),
or for compositions with positive time steps for, e.g., the heat equa-
tion.

(7) Some nonlinear stability can follow merely from the group property,
such as preservation of KAM tori in Hamiltonian, volume-preserving,
or reversible systems (Broer et al. 1996, Shang 2000), preservation of
weak integrals which may partition phase space (Example 13), or the
nonlinear stability of fixed points of Hamiltonian systems (Skeel and
Srinivas 2000).

(8) The modified Hamiltonian of symplectic integrators can confer nonlin-
ear stability. In particular, for splitting methods, the critical points of
H do not move or change their value under the perturbation due to
the integrator (McLachlan, Perlmutter and Quispel 2001).

(9) Paradoxically, in spite of Theorem 26 below, it can be shown that
composition methods can be used to create A0-stable methods of order
6 and higher (Iserles and Quispel 2002).

(10) Sometimes, a loss of stability is due to a resonance between different
linear modes. For example, the time-τ flow of the harmonic oscillator
has eigenvalues e±iτ which meet at τ = π. It is possible to design
special methods for such resonances, for instance, between fast and
slow modes, that do not cause instability (Leimkuhler and Reich 2001).
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Theorem 26. (Negative time steps; Sheng (1989)) Let A and B be
square matrices. There are no real solutions of the order conditions for the
method K∑

k=1

γk

n∏

i=1

exp(aikτA) exp(bikτB)

to have order 3 for the ODE ẋ = (A+B)x with

γk ≥ 0, aik ≥ 0, bik ≥ 0, for all i and k.

Although proved for linear systems, the same proof works for for nonlinear
ODEs and (by taking K = 1) geometric composition methods.

(Note, however, that there can be complex solutions with positive real
parts. For example, consider the 3-stage 4th-order method (4.4) with n =
m = 1 and α = 1/(2 − 21/3e2πi/3) ≈ 0.3244 + 0.1346i, β = 1 − 2α ≈
0.3512− 0.2692i. For linear problems ẋ = Ax+Bx, x ∈ C

n, and ϕ(τ) given
by leapfrog, this composition is unconditionally stable provided multiplying
by the time steps does not push the eigenvalues of A and B into the right
half plane, e.g., if A, B are negative definite. The complex heat equation is
easier to integrate than the real heat equation!)

4.5. Correctors

Because of the large number of order conditions, even for type SS methods,
various special cases have been considered in order to find better methods.
Great progress has been made in a series of studies over the past decade to
find better methods for modest orders, say p = 4, 6, and 8.

The first special case we consider is the use of a ‘corrector’ (also known
as processing or effective order), introduced by Butcher (1969) for Runge–
Kutta methods, by Takahashi and Imada (1984) for compositions of expo-
nentials, and developed greatly for symplectic integrators for solar system
dynamics by Wisdom, Holman and Touma (1996). Suppose the method ϕ
can be factored as

ϕ = χψχ−1.

Then, to evaluate n time steps, we have ϕn = χψnχ−1, so only the cost of
ψ is relevant. The maps ϕ and ψ are conjugate by the map χ, which can be
regarded as a change of coordinates. Many dynamical properties of interest
(to a theoretical physicist, all properties of interest) are invariant under
changes of coordinates; in this case we can even omit the χ steps entirely and
simply use the method ψ. For example, calculations of Lyapunov exponents,
phase space averages, partition functions (Section 5.3), existence and periods
of periodic orbits, etc., fall into this class. If the location of individual orbits
is important, one still does not need to know χ exactly, but can merely
approximate it (López-Marcos, Sanz-Serna and Skeel 1996).
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The simplest example of a corrector is the following:

eτAeτB = e
1
2 τA
(
e

1
2 τAeτBe

1
2 τA
)
e−

1
2 τA,

showing that the first-order method (1.1) is conjugate to a second-order
symmetric method, namely leapfrog, when X is split into n = 2 pieces.
Thus, this first-order method has all sorts of serendipitous properties not
shared by general first-order methods.

To derive the order conditions in general, we represent the kernel ψ = eK

and corrector χ = eC and write

eτX = eCeKe−C

= eK+[C,K]+
1
2! [C,C,K]+

1
3! [C,C,C,K]+···

which allows one to determine the conditions on C and K first, and then to
construct specific C, K that satisfy these conditions. Similarly,

eK = e−CeτXeC

= eτ(X−[C,X]+
1
2! [C,C,X]− 1

3! [C,C,C,X]−··· ),

which shows that only those terms in the error which are Lie brackets of X
(either X = A+B for a method (4.1), or X1 for a method (4.9)) can possibly
be eliminated by a corrector. The second form separates the conditions in
C from those in K.

Since all of the terms from Ln−1(A,B) are available in C to correct the
terms from Ln(A,B) in K, one expects a telescoping sum in counting the
number of order conditions on K. This in fact occurs, as the following res-
ult shows. The number of order conditions is greatly reduced (although
it still has the same asymptotic growth). For symmetric kernels, to avoid
introducing even terms into the expansion of K it is necessary to use a cor-
rector which satisfies χ(−τ) = χ(τ) + O(τp), which is achieved by iterating
χ(k+1)(τ) = χ(k)(τ)χ(k)(−τ).

Theorem 27. (Blanes 2001, Blanes, Casas and Ros 2000a) Let cn =
dimLn(A,B) and dn = dimLn(X1, X3, X5, . . . ), and define c0 = d0 = 0.
Then the number of order conditions for a type S method of order p, and
for a type S or SS method of order 2k, are as follows.

Type of method Uncorrected Corrected

NS
∑p

n=1 cn cp + 1 for p ≥ 2

S
∑k−1

n=0 c2n+1
∑k−1

n=0(c2n+1 − c2n)

SS
∑k−1

n=0 d2n+1
∑k−1

n=0(d2n+1 − d2n)
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The total number of order conditions is given in Table 4.1. While the
type NS methods look appealing, in that all errors of order 1 < n < p can
be corrected, it has been found that there are no real solutions of the order
conditions with the minimum number of stages.

The error can be substantially reduced by the use of a corrector. How-
ever, it can be argued that the part of the error removed by correction was
not serious anyway (but at least one should not waste parameters on cor-
rectable errors). Therefore, a fair comparison is between optimal correction
of a standard method, such as one of those given in the previous section,
and optimal correction of an arbitrary method. For example, for type SS
methods we have the following result.

Theorem 28. (McLachlan 2002) The Suzuki methods (4.4) of order 4
with m = 1 locally minimize the uncorrectable 5th-order error amongst all
(2n+ 1)-stage type SS methods.

Some good methods with correctors are given in Section 4.9. The ad-
vantages of considering a corrector are even greater in the Runge–Kutta–
Nyström and nearly integrable cases, considered below.

4.6. Runge–Kutta–Nyström methods

Let us consider the case of simple mechanical systems, Hamiltonian systems
with H = A + B where the kinetic energy A = A(q, p) is quadratic in p
and the potential energy B = B(q). (We now work with the Lie algebra of
Hamiltonian functions under the Poisson bracket rather than the Lie algebra
of Hamiltonian vector fields; the two are isomorphic.) Then each Lie bracket
of A and B is homogeneous in p. Let degX be the degree of X in p. Then
for degX, deg Y not both zero, we have

deg[X,Y ] = degX + deg Y − 1,

while, if degX = deg Y = 0 (i.e., if X and Y are both functions of q only),
we have

[X,Y ] = 0

and the order conditions corresponding to such a bracket can be dropped.
This is a natural generalization of Runge–Kutta–Nyström methods for q̈ =
f(q) (in which case A = 1

2p
2). Let us call the Lie algebra generated by such

an A and B, with no further conditions, LRKN(A,B).
The first bracket that can be dropped is [B,B,B,A] = 0. It can be shown

that (McLachlan 1995)

LRKN(A,B) ⊆ B + L(A, [B,A], [B,B,A])
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so that, from Theorem 25,

dimLRKN
n (A,B) ≤ 1

n

∑

d|n

3∑

i=1

λ
−n/d
i ,

where λi are the 3 roots of p(T ) = 1 − T − T 2 − T 3 = 0. The only root
outside the unit circle is ≈ 1.84. Thus

dimLRKN
n (A,B) ≤ 1

n
1.84n.

So the complexity of these methods is less than type NS or S methods, but
still more than type SS. (The RKN case does not simplify type SS methods
any further.) The actual dimensions for n ≤ 10 are given in Table 4.1.

Blanes and Moan (2000) have made a detailed study of the order condi-
tions for this case, and find 4th-order methods with error constants 1.32,
0.64, 0.36, and 0.29 for methods with 3, 4, 5, and 6 stages respectively, and
6th-order methods with error constants 1.02, 0.78, and 0.63 with 7, 11, and
14 stages respectively. (See Section 4.9, methods 3(a), (b).)

It should be emphasized that these optimized methods are really very
accurate. For example, on the Hénon–Heiles system the best 4th-order 6-
stage method beats leapfrog (at constant work) right up to the former’s
stability limit of τ ≈ 4.2. Even for short times these methods are good:
integrating Hénon–Heiles for time 1 from initial conditions (1, 1, 1, 1), this
4th-order method has a global error about 0.00175 times that of classical
4th-order Runge–Kutta: that is, it costs 6

40.001751/4 = 0.31 as much for a
given error. This should be compared to the earliest 4th-order symplectic
integrators, (4.4) with n = m = 1, which have truncation errors 10 times
larger than classical Runge–Kutta.

By applying a corrector, one can do better again (Blanes, Casas and
Ros 2000a).

RKN splitting methods can also be used for non-Hamiltonian systems of
the form

ẋ = f(x) + L(x)y,

ẏ = g(x),

where x ∈ R
m, y ∈ R

n, and L(x) ∈ R
m×n. For example, high-order systems

z(k) = f(z, z′, . . . , z(k−1)) have this form when written as the (divergence-
free) first-order system

ẋi = xi+1, i = 1, . . . , k − 2,

ẋk−1 = f(x1, . . . , xk−2),

where xi = z(i).
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4.7. Nearly integrable systems

Consider the family of systems ẋ = A + εB involving a small parameter ε,
where A and B are integrable. A composition of flows of A and B has an
error expansion in Ln(τA, τεB). The error term involving n As and m Bs is
O(τn+mεm). In particular, m ≥ 1 so the error is at most O(ε) and vanishes
with ε. Splitting is superb for such nearly integrable systems.

But, one can do even better. Typically, ε≪ τ and one can preferentially
eliminate error terms with small powers of ε. The number of these terms is
only polynomial in n, instead of exponential. Thus, we can beat the large
cost of high-order methods in this case. For example, there is only 1 error
term of each order O(ετn) (namely ετn[A, . . . , A,B]), ⌊1

2(n − 1)⌋ of order

O(ε2τn), and ⌊1
6(n− 1)(n− 2)⌋ terms of order O(ε3τn).

Furthermore, we have the following.

Theorem 29. For any kernel of order at least 1, for all n there is a cor-
rector which eliminates the O(ετp) error terms for all 1 < p < n.

Proof. We have

K = τA+ ετB +
∞∑

n=2

ετnkn[An−1B] + O(ε2),

and take the corrector to be

C =
∞∑

n=1

ετncn[An−1B] + O(ε2).

Then

[C,K] = −ε
∞∑

n=1

cnτ
n+1[AnB] + O(ε2)

and [C,C,K] = O(ε2). Therefore

eCeKe−C = eK+[C,K]+O(ε2)

= τA+ ετB + ε

∞∑

n=2

(kn − cn−1)τ
n[An−1B] + O(ε2),

and all O(ε) errors can be corrected by taking cn = kn+1 for n ≥ 1. �

Thus, any splitting method is ‘really’ O(ε2) accurate on near-integrable
problems. Wisdom and Holman (1991) first derived these correctors for the
leapfrog kernel and used them to great effect in their study of the solar
system. Blanes, Casas and Ros (2000a) have made a systematic study of
higher-order methods and construct, for example, a 2-stage method of order
O(ε2τ4 + ε3τ3), a 3-stage method of order O(ε2τ6 + ε3τ4), and so on.
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4.8. Methods with commutators

Given a splitting X =
∑
Xi, one can consider constructing a method not

just from the flows of Xi but also from the flows of their commutators
[. . . , Xi, Xj ], or from approximations of these flows. Using this extra in-
formation will always allow one to approximate the flow of X better, but
the new information may be costly and the net benefit can only be judged
in specific cases.

The most venerable of such methods is due to Takahashi and Imada
(1984), for ẋ = A+B:

eCe
1
2 τAe

1
2 τBe−

1
24 τ

3[B,B,A]e
1
2 τBe

1
2 τAe−C = eτ(A+B)+O(τ5) (4.12)

where the corrector C = 1
24τ

2[A,B] + O(τ4). Without a corrector, one
can use

e
1
6 τBe

1
2 τAe

1
3 τBe−

1
72 τ

3[B,B,A]e
1
3 τBe

1
2 τAe

1
6 τB = eτ(A+B)+O(τ5). (4.13)

Observe that, in the Runge–Kutta–Nyström case with A = 1
2p

TM(q)p, B =
B(q), we have that

[B,B,A] = ∇BTM∇B = fTMf, f = −∇B,
is a function of q only, hence integrable by Euler’s method. The three central
terms in (4.12) and (4.13) then coalesce and only one force evaluation is
needed per time step. The flow of [B,B,A] is

p(t) = p(0) − t(M ′(f, f) + 2f ′Mf)(q(0)),

which only involves one derivative of the force evaluated in one directionMf .
This can be very cheap for some problems, for instance, n-body systems

with 2-body interactions, for which it costs about the same as one force
evaluation, or, if dominated by expensive square root calculations, much
less. For, let V : R

3 → R be a potential such that B =
∑

j 6=i V (qi − qj),

qi ∈ R
3. Then

∑

j

∂fi
∂qj

vj =
∑

j

V ′′(qi − qj)(vi − vj),

where V ′′ is the Hessian of V .
Further, for any A and B we have the possibility of splitting [B,B,A] =∑
Ci and using

eτ
3[B,B,A] = eC1 . . . eCn + O(τ6).

For large systems with local interactions, such as discretizations of PDEs,
[B,B,A] is also local and can be split by partitioning the unknowns appro-
priately.
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This method can be extended by (Blanes 2001):

(1) including more stages (as before, this decreases the error constants
somewhat);

(2) going to higher order (up to 8th-order methods have been found);

(3) considering near-integrable systems;

(4) including more derivatives (e.g., for RKN systems, [B,A,B,B,A] is a
function of q only; its flow involves the third derivative of the force).

4.9. Some good methods

For methods of the types ϕNS,S,SS, it has been found that if one takes enough
stages to provide as many parameters as there are order conditions, the order
conditions always have real solutions. However, it is also possible to include
more stages and use the free parameters to minimize the error in some sense.
This is usually done by choosing a norm on the vector space Lp+1(A,B),
that is, assigning some weights to the cp+1 independent error terms. The
inherent arbitrariness in this procedure has not, so far, led to any serious
disagreement over which methods have the smallest error. If the norm of the

error is ep+1, it is traditional to compare the effective error me
1/p
p+1, which,

for sufficiently small step sizes, is proportional to the amount of work needed
to attain a given error.

For example, consider 4th-order type S methods. There are 4 order con-
ditions, corresponding to A, B, [A,A,B], and [B,B,A]. The method (4.11)
has m+ 1 free parameters, so a minimum of three stages is required. There
is a unique 3-stage method, namely (4.4) with n = m = 1, and (m − 3)-
parameter families of m-stage methods. Blanes and Moan (2000) find meth-
ods with 3, 4, 5, and 6 stages with effective errors of 1.33, 0.71, 0.62, and
0.56, respectively. With 7 stages, order 6 is possible. However, there prob-
ably exist 7-stage 4th-order methods with smaller 7th-order errors than the
best order 6 method. In truth, there is only a modest range of step sizes,
about 0.5 to 1 order of magnitude, in which methods of order p are pre-
ferred. Any smaller, and one should switch to order p + 2; any larger, and
one should switch to order p− 2. Within this range, other questions such as
the size of each order p error term and of the p+ 2 errors, and the stability
for this τ , come into play.

Some methods with the smallest known effective errors are given below.
Methods 1(a), (c) and 3(a), (b) are due to Blanes and Moan (2000), 1(b),
2(a) to Suzuki (1990), 1(d) to McLachlan (1995), 2(b) to Blanes, Casas
and Ros (2000a), 2(c) to McLachlan (2002), 3(c) to Takahashi and Imada
(1984), 3(d) to López-Marcos, Sanz-Serna and Skeel (1997), 3(e), (f) to
Blanes, Casas and Ros (2001), and 4(b) to Blanes, Casas and Ros (2000b).
For simple, easy-to-use methods we particularly recommend 1(a) and 3(a).
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1: Methods for arbitrary splittings. These can be applied directly if
X = A+B where the flows of A and B are known, or applied to an arbitrary
integrator of X by massaging the coefficients as in Theorem 24.

(a) 4th order, type S, m = 6 stages, (4.11) with

a1 = 0.0792036964311957, b1 = 0.209515106613362,

a2 = 0.353172906049774, b2 = −0.143851773179818,

a3 = −0.0420650803577195, b3 = 1/2 − b1 − b2,

a4 = 1 − 2(a1 + a2 + a3).

(b) 4th order, type SS,m = 5 stages, (4.4) with α = 1/(4−41/3), β = 1−2α.

(c) 6th order, type S, m = 10 stages, (4.11) with

a1 = 0.0502627644003922, b1 = 0.148816447901042,

a2 = 0.413514300428344, b2 = −0.132385865767784,

a3 = 0.0450798897943977, b3 = 0.067307604692185,

a4 = −0.188054853819569, b4 = 0.432666402578175,

a5 = 0.541960678450780, b5 = 1/2 −∑4
i=1 bi,

a6 = 1 − 2(
∑5

i=1 ai).

(d) 6th order, type SS, 9 stages, (4.6) with

a1 = 0.1867, a2 = 0.55549702371247839916,

a3 = 0.12946694891347535806, a4 = −0.84326562338773460855,

a5 = 1 − 2
∑4

i=1 ai.

2: Methods with correctors.

(a) 4th order, type SS, 2m+ 1 stages, (4.4) with

α = 1/(2m− (2m)1/3), β = 1 − 2mα.

(b) 4th order, type S, m = 5 stages, (4.11) with

a1 = 0, b1 = 6/25,

a2 = (57 +
√

18069)/300, b2 = −1/10,

a3 = 1/2 − a2, b3 = 1 − 2(b1 + b2).

(c) 6th order, type SS, 2m + 3 stages, a1 = · · · = am = x, am+1 = y,
am+2 = z = 1 − 2(mx+ y) where (x, y) is the unique real root of

2mx3 + 2y3 + z3 = 2mx5 + 2y5 + z5 = 0.

The 9, 11, and 13 stage methods are very good: e.g., for 11 stages,

a1,2,3,4 = 0.1705768865009222157, a5 = −0.423366140892658048.
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3: Runge–Kutta–Nyström methods. When output is not required,
two b1 stages coalesce in methods 3(a), 3(b), and 3(f), reducing the number
of stages by one. Methods with a corrector are also 4th-order for arbitrary
(non-RKN) splittings, but are not optimized for that case.

(a) 4th order, m = 7 stages, (4.11) with

a1 = 0, b1 = 0.0829844064174052,

a2 = 0.245298957184271, b2 = 0.396309801498368,

a3 = 0.604872665711080, b3 = −0.0390563049223486,

a4 = 1/2 − (a2 + a3), b4 = 1 − 2(b1 + b2 + b3).

(b) 6th order, m = 12 stages, (4.11) with

a1 = 0, b1 = 0.0414649985182624,

a2 = 0.123229775946271, b2 = 0.198128671918067,

a3 = 0.290553797799558, b3 = −0.0400061921041533,

a4 = −0.127049212625417, b4 = 0.0752539843015807,

a5 = −0.246331761062075, b5 = −0.0115113874206879,

a6 = 0.357208872795928, b6 = 1/2 −
∑5

i=1 bi,

a7 = 1 − 2
∑6

i=2 ai.

With a corrector, kernels leading to good methods are

eaτAebτBe(1/2−a)τAe(1−2b)τB−cτ3[B,B,A]e(1/2−a)τAebτBeaτA,

with either

(c) a = 0, b = 0, c = 1
24 (4th order),

(d) a = 0, b = 1
4 , c = 1

96 (4th order),

(e) a = −0.0682610383918630, b = 0.2621129352517028,

c = 0.0164011128160783 (6th order),

or

(f) 6th order, (4.11) with m = 7 stages and

a1 = 0, b1 = 0.15,

a2 = 0.316, b2 = 0.3297455985640361,

a3 = 0.4312992634164797, b3 = −0.049363257050623707,

a4 = 1/2 − (a2 + a3), b4 = 1 − 2(b1 + b2 + b3).
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4: Methods for nearly integrable systems.

(a) The Takahashi–Imada method 3(c) above is correctable to O(ε2τ4) for
any splitting with B = O(ε) and A = O(1).

(b) The type S kernel (4.11) with m = 3 stages and

a1 = 0.5600879810924619, b1 = 1.5171479707207228,

is correctable to O(ε2τ6 + ε3τ4) for any splitting.

5. Applications

5.1. Molecular dynamics

In molecular simulation (Allen and Tildesley 1987, Leimkuhler, Reich and
Skeel 1996, Kofke 2000, Leimkuhler 2002), one of two methods is used: mo-
lecular dynamics (MD) or Monte Carlo. Here we review the former. Two
main applications of MD are (i) multibody dynamics, and (ii) macromolec-
ules.

In multibody dynamics one simulates 10 to 100,000 or more atoms (typ-
ically 500–1000), viewed as classical point masses. The inter-particle forces
have a repulsive core and an attractive tail, and are typically modelled by
the Lennard–Jones (1.11) or Coulomb potentials. For the numerical integ-
ration of such systems, a fast inexpensive integration method is essential,
and generally the Verlet/leapfrog method or one of its variants is used (Ex-
ample 1).

In a macromolecule such as a protein chain, the potential energies V are
functions of the distances between neighbouring pairs of atoms (springs),
the angles defined by triples of atoms, and the dihedral angles between the
planes defined by successive triples of atoms. One must also take into ac-
count long-range forces, as well as ‘hydrogen bonds’. The bonds between
successive atoms may oscillate hundreds of times faster than the ‘dihed-
ral angles’. Since the latter are most important for determining conforma-
tional changes, molecular dynamicists generally replace the stiff springs by
rigid rods (allowing the use of larger time steps). To solve the resulting
constrained Hamiltonian system, the SHAKE algorithm was introduced by
Ryckaert, Ciccotti and Berendsen (1977). It was subsequently proved that
this algorithm is also symplectic (Leimkuhler and Skeel 1994). If the rods
are such as to make each molecule completely rigid, one can split the entire
system into rigid body plus potential terms, treating the rigid bodies as in
Example 2 (Dullweber, Leimkuhler and McLachlan 1997), giving an explicit
symplectic integrator preserving all the constraints.

Recently, variable time step algorithms that preserve time-reversal sym-
metry, but not symplecticity, have been proposed (Barth, Leimkuhler and
Reich 1999).
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5.2. Wave equations in fluids, optics, and acoustics

While many of the properties we have considered for ODEs (e.g., symmet-
ries, integrals, Hamiltonian structure) have analogues for PDEs, we are
aware of no general classification of PDEs. Therefore one can proceed
either by studying particular properties, or by studying particular equa-
tions. We have already mentioned PDEs with linear dissipation (Example
17), the KdV equation (Example 19), and symmetry reductions of PDEs
(Examples 30, 31, 32 and 33). Here we given some examples of PDEs for
which splitting methods are in current use.

Most established splitting methods are used for Lie group integration in
the linear case, and symplectic integration in the nonlinear case.

Lie group PDEs

The Lie group usually arises from a quadratic conservation law, for the linear
maps that preserve a quadratic form a Lie group. For example, let u(x, t) ∈
R and consider the 1-way wave equation ut = ux. On discretizing ∂

∂x by
an antisymmetric matrix S ∈ so(n) (e.g., by central differences) and u(x, t)
by a vector u(t) ∈ R

n, we have the system of ODEs u̇ = Su, a Lie group
equation on SO(n). The corresponding conservation law is d

dt‖u‖2 = 0.
However, one has to be careful in splitting such a discretization. The

terms that form a finite difference of order r should not be split because
each term is O(h−r), where h is the grid size. The local truncation error of
a composition method, nominally order p, is then τ−1 times the (p+1)-order
Lie brackets of the pieces, i.e., O(τph−r(p+1)). To get a method of actual
order p for the PDE will then require taking τ = O(hr+1), which is a very
severe restriction on the time step. If one takes τ = O(h) in the 1-way wave
equation, for example, the method is not even consistent with the PDE –
the truncation errors are O(1). (In fact, from the Lax equivalence theorem,
it has to be inconsistent, since from preservation of ‖u‖2 it is stable for all
τ/h, regardless of the CFL number.)

To avoid this problem, one should split the PDE itself before discretizing.
Many Lie groups can be found lurking in the spatial discretizations of

PDEs. Consider any linear ODE ẋ = Fx, x ∈ R
n, which has a quadratic

integral xTHx where H has k positive eigenvalues and n−k negative eigen-
values. There there is a unique antisymmetric matrix S such that F = SH.
Suppose S is nonsingular. We thus have F ∈ so(k, n − k) (corresponding
to preservation of the quadratic form xTHy), and also F ∈ sp(n), corres-
ponding to preservation of the symplectic form xTSy. Splitting H provides
a symplectic integrator, while splitting S provides an orthogonal integrator;
in the case k = n, the level set xTHx = const is compact and such an
integrator is unconditionally stable. Seeking an orthosymplectic splitting,
however, is more difficult and depends on the particular S and H. One has
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to find F =
∑
Fi where each Fi is orthosymplectic, i.e., HFi is antisym-

metric and FiS is symmetric for all i. One case where there are plenty of
such matrices is H = I and S =

(
0 I
−I 0

)
: the ODEs ẋ = Fx for

F =

(
C D
−D C

)
, C = −CT, D = DT (5.1)

all preserve xTx and are Hamiltonian with respect to the canonical sym-
plectic structure S.

For example, consider the Maxwell equations. Let B(x, t) ∈ R
3 be the

magnetic field for x ∈ R
3, E(x, t) ∈ R

3 the electric field, then (taking units
in which c = 1) the 3D vacuum Maxwell equations are

(
Bt

Et

)
=

(
0 −∇×

∇× 0

)(
B
E

)
,

where the operator on the right is self-adjoint. Letting D = DT be a
symmetric discretization of the curl operator gives a matrix of the form
(5.1) with C = 0. Therefore, any symmetric splitting of D, such as dimen-
sional splitting, provides symplectic integrators that also preserve the energy
‖E‖2 + ‖B‖2. Each piece must now be integrated by a quadratic-preserving
symplectic integrator such as the midpoint rule. On the other hand, for
Maxwell’s equations in an inhomogeneous medium some of the symmetry of
the problem is lost; dimensional splitting now preserves energy, but is not
symplectic.

Leaving aside splitting methods, the midpoint rule automatically pre-
serves all symmetric and antisymmetric inner products associated with any
linear equation and one could argue that is the most geometric integrator
around for this class of problems. It does require implementing more soph-
isticated linear solvers, however.

A very extensively used application is the one-way Helmholtz equation
used to model sound propagation in inhomogeneous oceans (Tappert and
Brown 1996). The Helmholtz equation

ψzz + ψrr + n2(z, r)ψ = 0,

where ψ is the amplitude of an acoustic wave, z is depth, r is ‘range’, and
n(z, r) the index of refraction of the medium, is factored to obtain

i
∂ψ

∂r
= Hψ, (5.2)

where

H = −
√
n2(z, r) − p2

and p = −i ∂
∂z . In this way only out-going waves are retained. Now r is

regarded as the time variable and (5.2) is the time-dependent Schrödinger
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equation with Hamiltonian H. It is a Lie group equation in U(n), corres-
ponding to preservation of

∫
|ψ|2 dz. (Note that the real form of u(n) is

(5.1).) With a Fourier discretization of p, H cannot be split into a sum of

explicitly integrable pieces. The way out is to approximate H by H̃ so that

H̃ =
∑
H̃i and each factor eitH̃ can be evaluated explicitly. The simplest

such approximation is

H̃ = 1
2p

2 − 1
2n

2 := H1 +H2.

The equations corresponding to H1 are

iψ̇ = 1
2ψxx,

which can be solved exactly in a Fourier discretization using the FFT, while
the equations corresponding to H2 are

iψ̇ = 1
2n

2(z, r)ψ,

which is an ODE for ψ at each spatial site. (Further splitting removes the
r-dependence.) This is the original split-step Fourier method of Tappert
(1977). Other approximations, valid over a wider range of n and p, can also

be used, e.g., H̃ = −
√

1 − p2/n − n (Tappert and Brown 1996). Similar
equations and methods arise in optics (Agrawal 1989).

Hamiltonian PDEs

These have the form (Marsden and Ratiu 1999)

ut = D δH
δu

,

where D is a Poisson operator and H is the Hamiltonian. (In general, D
can depend on u, as in the Euler fluid equations for example. This case is
notoriously difficult to discretize and we do not consider it here.) These can
be discretized to obtain systems of Poisson ODEs of the form ut = S∇H(u),
where S is an antisymmetric matrix. Finite difference, Fourier, and fi-
nite element discretizations on arbitrary grids can be used (McLachlan and
Robidoux 2000); the main point is to take care to preserve the symmetry of
the differential operators appearing in D and H. Then, just as in standard
symplectic integration, H must be examined to see if it can be split. Usu-
ally this is straightforward, and for spatially homogeneous problems even
the entire linear part can be integrated exactly as in the split-step Fourier
method. See McLachlan (1994) for examples of the nonlinear wave, nonlin-
ear Schrödinger, Boussinesq, KdV and Zakharov equations.

We shall consider just one example, the nonlinear wave equation qtt =
qxx − V ′(q) with periodic boundary conditions and a Fourier discretization
of qxx. In Hamiltonian form, we have H = 1

2p
2 + 1

2q
2
x + V (q) and

qt = p, pt = qxx − V ′(q).
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The linear part in Fourier space is

˙̃qn = p̃n, ˙̃pn = −n2q̃n,

which is easily solved exactly, and the nonlinear part in real space is

qt = 0, pt = −V ′(q),

also easily solved. Such splittings have the advantage that the highly ac-
curate RKN (Section 4.6), derivative (Section 4.8), and corrector (Sec-
tion 4.5) methods can be used, while at the same time preserving the near-
integrability in case of weak nonlinearities V ′(q) (Section 4.7).

Many Hamiltonian PDEs are also multi-symplectic and geometric integ-
rators exist which preserve this structure (Marsden and West 2001). For
simple cases, such as the nonlinear wave equation discretized with central
differences, symplectic integrators are also multisymplectic.

5.3. Quantum mechanics and quantum statistical mechanics

In time-dependent quantum mechanics, one is faced with computing

eitH , (5.3)

where H is the Hamiltonian operator and t denotes time. In quantum
statistical mechanics, by contrast, one must calculate

e−βH (5.4)

(or rather its trace), where H is again the Hamiltonian, and β = 1/(kT ),
with k being Boltzmann’s constant and T being the absolute temperature.

As we shall see, the main difference between (5.3) and (5.4) lies in the
factor i which occurs in (5.3), but not in (5.4). This difference has the con-
sequence that operators of the form eitH form a group (the unitary group),
while operators of the form e−βH form a symmetric space (the symmetric
space of positive definite Hermitian operators). We start with case (5.3) (in
spite of the fact that the chronological order is the other way around).

The time-dependent Schrödinger equation (De Raedt 1987)

The time evolution of a non-relativistic quantum mechanical system is gov-
erned by the time-dependent Schrödinger equation

∂ψ(r, t)

∂t
= −iHψ(r, t), (5.5)

whereH is the Hamiltonian of the system, ψ(r, t) is the normalized, complex-
valued wave function, ψ(r, 0) is the initial state at time t = 0, and the units
are such that ~ = 1.
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For simplicity we will restrict our discussion to the case of a particle
moving on a 1-dimensional interval 0 ≤ x ≤ a, and take

H = − d2

dx2
+ V (x),

where V (x) represents the (real) potential energy at position x. It is clear
that, with this choice, (5.5) is a linear hyperbolic partial differential equa-
tion.

Being linear, (5.5) is of course always integrable. So a splitting into in-
tegrable pieces is not the question here. Rather, the pieces should be much
faster to solve than the full system. Numerous discretizations and splittings
of H into easily integrated pieces are possible, the two most popular being a

Fourier discretization (so that exp
(
it d2

dx2

)
can be evaluated using the FFT)

combined with splitting, and finite differences combined with a unitary
integrator such as the midpoint rule.

Note that eitH is not only unitary, it is also symplectic; the canonical co-
ordinates are Re(ψ) and Im(ψ) and the system evolves in U(n) ⊂ Sp(2n).
So it is also possible to use q–p splitting on the system q̇ = Hp, ṗ = −Hq.
The integrator is no longer unitary, merely symplectic, and hence no longer
unconditionally stable; but this does allow one to handle arbitrary Hamilto-
nians, which H-splitting does not (e.g., if H contains V (x, d

dx)). (Note that
the Schrödinger equation, the 1-way Helmholtz equation, and the vacuum
Maxwell equations (Section 5.2) all have essentially the same structure, and
the same Lie group U(n).)

Quantum statistical mechanics (De Raedt and Lagendijk 1985)

The central object in quantum statistical mechanics is the partition function

Z := Tr e−βH ,

from which thermodynamic functions such as energy and specific heat can
be derived. Here ‘Tr’ means one has to calculate the trace of the operator
e−βH . (One can think of H as a matrix. For spin systems and other discrete
systems, this is immediate; continuous systems can be approximated by
discrete systems by, e.g., finite differences.)

In practical applications, one must generally resort to using an approxim-
ation to e−βH . Since H is an element of the Lie triple system of Hermitian
operators, it follows that e−βH is an element of the symmetric space of
positive definite Hermitian operators. Suitable approximations to e−βH are
therefore obtained using symmetric compositions (as in Theorem 20) (De
Raedt and De Raedt 1983) such as (4.3), (4.4), (4.11), and (4.12). For dis-
crete spin systems, H is split by a (e.g., odd/even) partitioning of the lattice
sites into uncoupled subsets. In each case, one approximates e−βH by com-
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posing m steps of the method with ‘time’ step τ = β/m. Note that methods
based on correctors, Section 4.5, are preferred, as the trace in Z eliminates
any correction term. Even though, after splitting H =

∑
Hi, each e−βHi

can in principle be evaluated in closed form, even this is often too expensive,
so Monte Carlo is applied to the entire symmetric composition (so that only
matrix-vector products e−βHiv have to be evaluated). Numerous variations
of this idea have been successfully implemented by Suzuki (1990) and others.

Note that the operators itH also lie in a Lie triple system, of imaginary
skew-Hermitian matrices, corresponding to the reversing symmetry ψ 7→
ψ of (5.5). Therefore it is desirable but not essential to use symmetric
compositions to approximate eitH as well, to stay in the symmetric space of
symmetric unitary matrices.

5.4. Celestial mechanics

Symplectic integrators based on splitting have been used to great effect in
celestial mechanics by Wisdom and others. In Sussman and Wisdom (1992),
100 million year integrations of the whole solar system were performed,
yielding a positive Lyapunov exponent, which suggests that the solar system
is chaotic. (This chaos in the solar system is reviewed in Lecar, Franklin,
Holman and Murray (2001).) The Hamiltonian for the n-body problem is

H =
n−1∑

i=0

p2
i

mi
−
∑

i<j

Gmimj

rij
,

where rij := ‖qi − qj‖. The first fundamental idea (Wisdom and Holman
1991) is not to split H = T (p) + V (q), which could easily be done, but to
split

H = HKepler + εHinteraction, (5.6)

where HKepler represents the n − 1 independent Keplerian motions of the
planets/satellites with respect to the central body, Hinteraction represents the
perturbation of the outer bodies on one another, and ε is the ratio of the
mass of the largest outer body to the mass of the central body. For the solar
system, ε ≈ 10−3. That is, the splitting preserves the near-integrable char-
acter of the system, see Section 4.7. Standard leapfrog, as used in Sussman
and Wisdom (1992), leads to O(ετ2) errors, while corrected leapfrog leads
to O(ε2τ2) errors with no additional work. In practice, even with a fairly
large time step of 7.2 days (Wisdom, Holman and Touma 1996), leapfrog
had a bounded relative energy error of 2 × 10−9 and corrected leapfrog a
linear relative energy error (presumably due to round-off) of 2 × 10−11 per
100 million years.

To end this subsection, we will give the derivation ofHKepler andHinteraction
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in (5.6). One first transforms to Jacobi coordinates:

q̃0 :=

∑n−1
j=0 mjqj
∑n−1

j=0 mj

,

(5.7)

q̃i := qi −
∑i−1

j=0mjqj
∑i−1

j=0mj

.

In these coordinates,

H =
p̃2
0

2
∑n−1

j=0 mj

+HKepler + εHinteraction,

where

HKepler =

n−1∑

i=1

p̃2
i

2m̃i
− Gmimo

‖q̃i‖
,

εHinteraction =

n−1∑

i=1

Gmim0

(
1

‖q̃i‖
− 1

‖qi − q0‖

)
−

∑

0<i<j≤n−1

Gmimj

‖qi − qj‖
,

with

m̃i := mi

∑i−1
j=0mj

∑i
j=0mj

.

The first term in H represents the free motion of the centre of mass. It
commutes with HKepler and Hinteraction and can hence be ignored. Inverting
(5.7), Hinteraction can be expressed in terms of the Jacobi coordinates only,
and it can be shown that the first term in Hinteraction is of the same order
as the second, and hence much smaller than HKepler.

Thus, it is worth going to some trouble to preserve the near-integrability
of the system. Other developments include multiple time-stepping (Hardy,
Okunbor and Skeel 1999), to take advantage of the range of frequencies of
the planets, and the ‘smooth switch’ of Kværnø and Leimkuhler (2000). In
the latter, one considers a general n-body problem and wants to integrate
any close encounters of two bodies exactly. Depending on which bodies are
close to each other, one may prefer a splitting H = A1 +B1 in region R1 of
phase space, and a splitting H = A2 +B2 in region R2. Changing abruptly
from one to another destroys all geometric properties, but by introducing a
buffer zone and sufficiently smooth (e.g., piecewise polynomial) interpolation
between the two splittings in this zone, the geometric properties can be
retained.
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5.5. Advection–reaction–diffusion equations

We consider systems of partial differential evolution equations of the form

ut = X := X1 +X2 +X3 +X4 +X5, (5.8)

where u : D × R → R
k are the field variables, D is the spatial domain, and

X1 = ∇ · f(u), where f : R
k → R

k is a flux (so that ut = ∇ · f(u) is a
hyperbolic system of conservation laws); X2 = g(u), where g : R

k → R
k are

source or reaction terms (in reacting chemical systems, the ODEs ut = g(u)
are typically extremely stiff); X3 = ∇ · (A(x)∇u), where A : D → R

k×k is
a matrix of diffusion constants; X4 = h(x, t), where h : D × R → R

k are
external forces; and X5 is a Lagrange multiplier for any constraints that
may be present, as in the incompressible Navier–Stokes equations. Many
‘operator-splitting’ schemes have been proposed for equations with various
combinations of these terms present, splitting into various sums of the Xi.
In addition, dimension- or Strang-splitting (Strang 1968) is widely used,
in which, for instance, the diffusion terms are diagonalized and split as
X3 =

∑
Aii(x)uxixi

. If ϕi is an unconditionally stable method for the one-
dimensional heat equation ut = Aiiuxixi

, then either leapfrog or
∑

σ

∏

i

ϕσi
,

where σ runs over all permutations of the spatial dimensions, is uncondition-
ally stable. Since integration methods for these large systems are usually
only second order in time, the restriction to second order (see Section 4.4)
has not been regarded as onerous.

We shall not survey this huge field here; see representative applications
in reaction–diffusion systems (Karlsen and Lie 1999), fluid-particle systems
(Glowinski, Pan, Hesla and Joseph 1999), chemotaxis (Tyson, Stern and
LeVeque 2000), magnetohydrodynamics (Ryu, Jones and Frank 1995), image
processing (Weickert, Romeny and Viergever 1998), combustion chemistry
(Yang and Pope 1998), meteorology (Leonard, Lock and MacVean 1996),
and porous media (Barry, Bajracharya and Miller 1996). Rather, we are
interested in potential similarities between this form of splitting and that
which we have reviewed for ODEs.

A recent comparison of many integration methods for the Navier–Stokes
equations is interesting here (Turek 1996). (Note that the Navier–Stokes
equations contain all terms above except X2.) Let ϕ(τ, z, w) be the method

un+1 − un
τ

= z(X1 +X3)(un) + (1 − z)(X1 +X3)(un+1) +

wX4(tn) + (1 − w)X4(tn + τ) +X5(un+1),

∇ · un+1 = 0.



418 R. I. McLachlan and G. R. W. Quispel

Then the method

ϕ(θτ, 2θ, 1)ϕ((1 − 2θ)τ, 1 − 2θ, 0)ϕ(θτ, 2θ, 1),

θ = 1 − 1√
2
, is second-order and stiffly A-stable. Turek (1996) finds this

method superior to the widely used backward Euler and Crank–Nicolson
methods, and to more explicit multi-step treatments of the nonlinear ad-
vection term, without requiring more storage or more work (when applied
with 3 times the time step of these competitors). The parallels with ODE
splitting and composition methods are striking and it seems that the two
fields could usefully learn from each other.

When the diffusion terms in (5.8) are absent, we have a first-order hyper-
bolic system of conservation laws with source terms. Shocks can form and
dimension splitting runs into an apparently fundamental obstacle; its order
is at most 1 (Crandall and Majda 1986), and in fact in most versions (e.g.,
in Tang and Teng (1995)) is only proved to be 1

2 . Practical methods for
multidimensional conservation laws (LeVeque 1998), while using a form of
splitting, are in fact significantly more complicated than simple leapfrog.

5.6. Accelerator physics (Forest 1998, Dragt and Abell 1996, Dragt 2002)

There are many fields of charged particle dynamics where a single particle
description is useful: storage rings, linear accelerators, and electron micro-
scopes, to name a few. Here we will concentrate on particle storage rings.

In large storage rings, particles typically make 108 or more revolutions.
This is an instance of the first of the following two remarkable facts of ring
dynamics (Forest 1998):

(1) the motion is nearly stable: particles seem to spend a long time in the
ring;

(2) the motion is symplectic in hadron (e.g., proton) machines and nearly
symplectic in electron machines (but also slightly stochastic).

To model this situation, one then has a non-autonomous (periodic) dy-
namical system of three degrees of freedom (i.e., 6 coupled equations). In
comparison with the solar system, for instance, one might think this system
should be much simpler. The problem, however, is that a single ring can
contain of the order of 5000 magnets for bending, focusing, and for correct-
ing the orbit. Hence, though the dimensionality of the system is low, the
equations of motion themselves are actually exceedingly complicated. One
therefore certainly aims to use explicit methods.

Traditional treatments assume that it is possible to write down a global
(Hamiltonian) differential equation for the entire ring; more recently de-
scriptions have been developed that take discrete symplectic maps as the
(complementary) starting point. In the latter approach, the return map for
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a particle revolution around the entire ring is often only available as a Taylor
series expansion up to a certain order. A problem then is that such a Taylor
series is in general not symplectic. This conundrum, dubbed the symplectic

completion problem, has been investigated in detail by Dragt and collab-
orators. Starting from the Hamiltonian description, another method is to
split the Hamiltonian into monomials that can each be explicitly integrated
(Channell and Neri 1996).

5.7. Other applications

There are many other applications, including the following.

• Constructing lattice maps. Maps evaluated in standard floating point
arithmetic are not usually invertible, which can be a small but no-
ticeable source of numerical dissipation. One way around this is to
replace phase space R

n by a lattice, say εZn, and require the map
to be a bijection of the lattice (Levesque and Verlet 1993). (This has
been used in the simulation of classical mechanical systems by quantum
computers (Georgeot and Shepelyansky 2001).) The only known prac-
tical method for constructing such bijections is to compose shears of
the form (x, y) 7→ (x, y + ε⌊f(x)/ε⌋). So it is easy to construct lattice
maps for any vector field X that is a sum of vector fields integrated by
Euler’s method.

• Splitting is an excellent way to construct integrators for stochastic
ODEs (Misawa 2001), especially when they are geometric.

• Nonautonomous systems. The usual way to treat these is to split the
corresponding autonomous systems in the extended phase space, as
in Example 3. However, Blanes and Moan (2001) have proposed an
interesting alternative based on the Magnus expansion. To integrate
the ODE ẋ = X(x, t) on [t0, t0 + τ ], first calculate the autonomous
vector fields

X0 :=

∫ t0+τ

t0

X(x, t) dt, X1 := 1
τ

∫ t0+τ

t0

(t− 1
2τ)tX(x, t) dt.

Then a second-order approximation of the flow of X is given by
exp(τX0), and a fourth-order approximation is given by

exp
(

1
2X0 − 2X1

)
exp
(

1
2X0 + 2X1

)
.

Each of these vector fields is then split and an integrator constructed
by composition. This can be cost-effective because more information
about the t-dependence of X is used.
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6. Open problems

We present some open problems varying in difficulty from fairly straightfor-
ward to perhaps impossible. In the latter case, one could aim to prove that
indeed the problem is impossible to solve, as in the ‘no-go’ results that (un-
der rather general conditions) (i) there are no symplectic energy-preserving
integrators for nonintegrable systems (Ge and Marsden 1988), and (ii) there
are no general analytic volume-preserving methods (Feng and Wang 1994).

6.1. Weak integrals

A nontrivial n-dimensional vector field can have at most n− 1 independent
first integrals. (If it has n, there would be no motion.) In contrast, it
can have an arbitrarily large number of weak integrals. The integration
method given in Section 3.8 works for both integrals and weak integrals
(Example 13). The maximum total number of integrals and weak integrals
that can be accommodated, however, is n − 1. This leads to the following
problem.

Problem 1. How does one preserve more than n − 1 integrals and weak
integrals?

6.2. Hamiltonian splitting

McLachlan and Scovel (1996) posed a number of problems in symplectic
integration. A number of these are still open; among them is the following.

Problem 2. Which Hamiltonians can be written as H =
∑n

i=1Hi where
one of the following holds: (i) each Hi is completely integrable; (ii) each Hi

is integrable in terms of elementary functions?

Problem 3. What is the structure of the Lie algebra generated by the
Hamiltonians p2 and V (q) under Poisson brackets? What is the dimension
of each graded subspace and the asymptotic behaviour of this dimension as
n→ ∞?

6.3. Volume preservation

The two known general volume-preserving methods (that is, the splitting
method presented in Section 3.4 and the correction method of Shang (1994)
and Quispel (1995)) give, for a Cr vector field, at best a Cr−1 integration
method (instead of a Cr one). This could lead to problems, for instance,
in the preservation of KAM-tori, in certain cases. We therefore pose the
following problem.

Problem 4. For which Cr divergence-free vector fields can Cr volume-
preserving integrators be constructed?
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6.4. Preserving two geometric properties simultaneously

Many open problems concern the simultaneous preservation of two or more
geometric properties, for instance, symmetry and any other property: that
is, for groups of diffeomorphisms G and H, to construct G ∩ H-integrators.
Some problems of this type now follow.

Here we will restrict to Lie or discrete, linear or affine symmetries, and to
the divergence-free, Hamiltonian and polynomial cases. We first discuss the
divergence-free case. To our knowledge, for the AAA flow (Example 29),
it is not known how to preserve volume and the whole reversing symmetry
group. This leads us to state the following problem.

Problem 5. Which (affine) symmetries can be preserved simultaneously
with volume?

As far as we know, no efficient integrator has been constructed that even
preserves volume and any translation symmetry.

In the Hamiltonian case, symplectic Runge–Kutta methods also preserve
all affine symmetries. They have the drawback, however, of being implicit.
We therefore pose the following problem.

Problem 6. Which (affine) symmetries can be preserved by explicit sym-
plectic integrators?

For polynomial vector fields, the following problem has not been solved
in full generality.

Problem 7. For which (affine) symmetries and polynomial vector fields
can explicit symmetry-preserving integrators be constructed?

Of course, one can further restrict this problem to the divergence-free or
Hamiltonian case, for instance.

Problem 8. Construct geometric integrators for systems preserving volume
and an integral.

This is solved in McLachlan and Quispel (2001b) in the special case in
which the topology of the level sets of the integral is completely understood,
by splitting into integrable 3-dimensional pieces. Some systems can be writ-
ten ẋ = S(x)∇I(x), where ST = −S, such that after splitting S leading
to two-dimensional pieces, each (xi, xj) system is area-preserving. Then we
need to solve the following.

Problem 9. Develop general area- and integral-preserving integrators for
two-dimensional systems.
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6.5. Splitting and composition

Problem 10. For systems that evolve in a semigroup, such as the heat
equation, develop effective methods of order higher than 2.

Problem 11. In a composition method of order p, explore the relationship
between the leading and subsequent error terms. Reconcile the conflicting
demands of small principal errors, few stages, stability, and robustness at
large step sizes. Obtain a theoretical bound for the work-error ‘envelope’
below which no method can operate.

Problem 12. Find optimal corrected methods for near-integrable systems
A+ εB of each principal error

∑
εnτpn .
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Berlin, 1984.

P. J. Channell and F. R. Neri (1996), A brief introduction to symplectic integ-
rators, in Integration Algorithms and Classical Mechanics (J. E. Marsden,
G. W. Patrick and W. F. Shadwick, eds), AMS, pp. 45–58.

P. J. Channell and J. C. Scovel (1990), Symplectic integration of Hamiltonian
systems, Nonlinearity 3, 231–259.

S. A. Chin and D. W. Kidwell (2000), Higher-order force gradient symplectic al-
gorithms, Phys. Rev. E 62, 8746–8752, Part B.

B. V. Chirikov (1979), A universal instability of many-dimensional oscillators sys-
tems, Phys. Rep. 52, 263–379.

M. Crandall and A. Majda (1986), The method of fractional steps for conservation
laws, Numer. Math. 34, 285–314.

J. B. De Lambre (1790–91), De l’usage du calcul différentiel dans la construction
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Appendix A: Proof of Theorem 5

We need to show that a given divergence-free X can be written as X = ∇·S.
To do this we shall first construct a splitting into two-dimensional volume-
preserving systems, and then construct the associated matrix S.

Start with the system of ODEs

ẋi = fi(x), i = 1, . . . , n.

This can be rewritten equivalently as

ẋi = fi(x), i = 1, . . . , n− 1,

(A.1)
ẋn =

(
fn(x) +

n−2∑

j=1

∫
∂fj
∂xj

dxn

)
−

n−2∑

j=1

∫
∂fj
∂xj

dxn.

We now split f as the sum of n− 1 two-dimensional divergence-free vector
fields. The first n− 2 are

ẋi = 0, i 6= j, n,

ẋj = fj(x), (A.2)

ẋn = −
∫

∂fj
∂xj

dxn,
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for j = 1, . . . , n− 2, and the final one is

ẋi = 0, i = 1, . . . , n− 2,

ẋn−1 = fn−1(x), (A.3)

ẋn = fn(x) +

n−2∑

j=1

∫
∂fj
∂xj

dxn.

It is trivial to check that the vector fields (A.2) are divergence-free. To verify
that (A.3) is also divergence-free, take its divergence and use ∇·f = 0. One
can take any arbitrary integration constraints in (A.2) as long as the same
ones are used in the corresponding anti-derivatives in (A.3).

Now observe that each subsystem is Hamiltonian in (xi, xn) variables, the
Hamiltonians being the entries in S(x); we have X = ∇S for

S =




0 . . . 0 H1
...

...
...

0 . . . 0 Hn−1

−H1 . . . −Hn−1 0


 ,

where Hj =
∫
fj(x) dxn for j = 1, . . . , n− 2, while Hn−1 is determined by

∂Hn−1

∂xn
= fn−1(x),

(A.4)
∂Hn−1

∂xn−1
= −fn(x) −

n−2∑

j=1

∫
∂fj
∂xj

dxn,

or

Hn−1 =

∫

C

[
fn−1(x) dℓxn −

(
fn(x) +

n−2∑

j=1

∫
∂fj
∂xj

dxn

)
dC

]
, (A.5)

in which C denotes an arbitrary curve in the (xn−1, xn) plane going from
(0, 0) to (xn−1, xn).

Appendix B: Splitting polynomials

Proof of Theorem 16. The usual basis for polynomials is the monomials
xi11 x

i2
2 . . . x

in
n , which we write using multi-indices as xi. Here we want to

derive a basis in terms of the perfect powers (a1x1 + · · ·+anxn)m = (aTx)m.
For example, we can write x1x2 = 1

2(x1 + x2)
2 − 1

2x
2
1 − 1

2x
2
2. We shall show

that there exists a vector a ∈ R
n such that the required basis (3.13) exists

with kji = aji , k = 0, . . . , dm, where dm + 1 = (n+m−1)!
m!(n−1)! is the dimension
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of the space of homogeneous polynomials of degree m. This is true if each
monomial can be uniquely expressed in the basis. This gives a system of
dm + 1 equations, namely

(aTx)j =
∑

i

cia
jixi, j = 0, . . . , dm, (B.1)

where the ci are the multinomial coefficients defined by the expansion of
(x1 + · · · + xn)m. Regarding these as linear equations in the dm + 1 un-
knowns cix

i, they have a unique solution if and only if the determinant of
the coefficient matrix is nonzero. The coefficient matrix aji is Vandermonde,
with determinant

D =
∏

k6=l

(ak − al).

Therefore, D 6= 0 if and only if ak 6= al for all k 6= l. Taking logs, D 6= 0 if

(k − l)T log a 6= 0

for all k 6= l with ki ≥ 0, li ≥ 0, and
∑
ki =

∑
li = m. The precise set

of valid as depends on m, but certainly D 6= 0 if no integer combination∑
ci log ai with

∑
ci = 0 is zero; or, setting without loss of generality a1 = 1,

if log a2, . . . , log an are linearly independent over Z. For example, choosing
a2, . . . , an to be the first n−1 prime numbers is sufficient, by unique factor-
ization. That is, D 6= 0 if none of the ai is a nonzero rational power of the
others.

Having chosen such an a, solving the linear equations (B.1) lets one ex-
press any homogeneous degree m polynomial in the basis (aj)Tx.

By construction, the initial portions of this basis, i.e., (aj)Tx for j =
0, . . . , dp, form a basis for the monomials of any degree p < m. �

We remark that the basis constructed here may not be the best one to
use in practice, which remains an interesting problem.

Appendix C: ‘On the usage of differential calculus in the

construction of astronomical tables’, by M. Delambre

Jean Baptiste Delambre (DL), 1749–1822, did not even begin studying astronomy

until his early 30s. In 1771 he tutored the son of M. d’Assy, Receiver General

of Finances, and in 1788 d’Assy built an observatory for DL. Here in 1792 he

published Tables du Soleil, de Jupiter, de Saturne, d’Uranus et des satellites de
Jupiter. He won a prize for his work in determining the orbit of the recently dis-

covered Uranus. We translate here a little of an article he wrote at about this time

(De Lambre 1790 ). DL is also noted for measuring (in order to establish the metre
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unit of length) a baseline from Dunkirk to Barcelona, with trigonometric tables in

degrees and new, metric survey instruments in gradians, during a revolution; and

for completing an enormous technical history of all astronomy.

In the construction of astronomical tables one is ordinarily content to
determine a certain number of terms exactly, at larger or smaller intervals,
depending on whether the progression of the differences is large or small.

If the first differences are relatively equal, one fills in the gaps by simple
proportional parts, but this case is rather rare when one aspires to high
precision.

If uniformity is only found in the second differences, there are formulae
& easy tables to correct the errors in the simple proportional parts; but
this method, which entails a sometimes tiring precision in the fundamental
calculations, itself becomes sometimes insufficient; & the methods proposed
to make up for this have seemed to me long & painful. This is what has led
me to search for more certain and faster methods.

I. The idea that presents itself first is to differentiate the formula with which
one calculates the table. In this way one obtains differentials of as many
orders as needed. One can calculate them in advance & form subsidiary
tables of them that considerably diminish the work. This method has always
worked for me & often much beyond my expectations; I am going to apply
it to the construction of the most used tables in the practice of astronomy.

II. There are no more useful ones than those of logarithms. The ones we
have appear exact & sufficient; but one can be curious to see what would
be the most certain & the most easy methods to reconstruct them, perfect
them, or extend them.

Let N be any number, M the base of the common tables, that is, the
number

0.434294481903251827651128918916605082294397005804.

One knows that the differential of the logarithm of N , or d logN = M [dNN −
1
2(dNN )2 + 1

3(dNN )3 +&c.]. If one supposes dN infinitely small,4 the expression

reduces to d logN = M dN
N .

III. The second difference will have the expression dd logN = −M(dNN )2.

Similarly for the third difference, we have ddd logN = 2M(dNN )3, & for

the fourth dddd logN = −3M(dNN )4. If N is very large with respect to

4 DL interprets dN as either the differential or forward difference of N , as the occasion
demands.
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dN , the error of these formulas will hardly be felt. Suppose therefore that
dN = 1, as is necessary to construct a table, and we will have5 dd logN
= − M

N2 .6

· · ·

X. Let us now propose to construct tables of the equation of the centre and
of the ray vector for the planets.7

We call z the mean anomaly, u the true anomaly, q the equation of the
centre, a & b the two semi-axes of the ellipse, e the eccentricity and s the
sinus of 1′′.8 One generally has q = z − u, hence dq = dz − du = 1◦ − du
when one constructs a table.

Hence also ddq = −ddu = −d(abdzrr ) = +2abdzdr
r3

; moreover r = bb
a−e cosu

& dr = −aesdz sinu
b ; then ddq = −2a2esd2z sinu(a−e cosu)3

b6
, or for simplicity

putting a = 1, & giving to the other letters the values corresponding to this

assumption, & you will have ddq = −2esd2z sinu(1−e cosu)3

b6
. This expression

can easily be made into a table taking u as argument; it suffices to calculate
in steps of 5◦ except when sinu is very large.9 One fills in the gaps by
proportional parts.

The infinitesimal formula du = bdz
rr = dz

b3
(1 − e cosu)2 is not at all exact

enough in practice,10 even putting (r+ 1
2dr)

2 & (u+ 1
2du) in lieu of r2 & u.11

It is easy to demonstrate that the true expression is sin du = bdz
r(r+dr) , and

this formula will be more accurate to the extent that one can consider the
little elliptic arc between the two ray vectors r & (r + dr) to be a straight

5 The first appearance of the leapfrog method? DL calculates values of u(t) by applying
the leapfrog method to ü = f(t), where f(t) is easier to calculate than u(t).

6 DL gives various calculations of logN by this method. In IV, he adds more terms in
the Taylor series of dd logN . In V, he expands d logN in inverse odd powers of 2N +1.
In VI, he illustrates how the first term in his series suffices when N is large enough. In
VII–IX he extends the method to trigonometric functions, using trigonometric identities
to simplify and improve the methods.

7 The ODEs that DL studies are special in that they can be solved implicitly, which
allows one to check and correct the error. This is still done today when we solve, say,
f(u, α) = 0 by continuation in the parameter α. For the history of solving Kepler’s and
related equations, see Dutka (1997) and Fukushima (1999) and references therein.

8 Angles are measured in seconds, and d sinu = s cosu du.
9 That is, DL wants to solve the ODE q̇ = f(q). He does this by applying the leapfrog

method (III) to q̈ = f ′(q)f(q), which is essentially a symplectic lift of the original ODE,
although not the usual one q̇ = f(q), ṗ = −f ′(q)p. He is tantalizingly close to applying
leapfrog to a genuine mechanical system q̈ = −∇V (q).

10 That is, Euler’s method is not accurate enough.
11 An early appearance of the implicit midpoint rule? DL now goes on to approximate this

equation further for his example, arriving at essentially a second-order Runge–Kutta
method.
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line. One can always, even for Mercury, put du in lieu of sin du, & one has

du =
dz

b3
[
1 − e cosu− e cos(u+ du) + e2 cosu cos(u+ du)

]
,

hence

dq = dz − dz
b3

+ edz
b3

cosu+ edz
b3

cos(u+ du) − e2dz
b3

cosu cos(u+ du).

The two first terms are constant, the next are easy to calculate because
the progress of differences always gives the value of du up to a few seconds,
which is sufficient for the terms which depend on (u+du). Only for the first
of the first differences is it necessary to use a little trial and error.12

· · ·
[T]his13 is indeed the equation that one finds in the new table of Monsieur
De la Lande. From this one can judge the precision of this method that
without trial and error corrects an error of 3◦ 8′ 31′′.

This solution of Kepler’s problem appears to me the shortest of all the ones
I know. I invite those who doubt this to calculate the same example by the
methods of Cassini, Simpson & La Caille. The last says in his astronomy
lessons that for no planet of the solar system can the adjustment of the
method go to three iterations. Apparently he has done all his trials with
the mean anomaly in the first quadrant, & then he may be right, but this
is not nearly true in the second quadrant & in our example six iterations
would be necessary.14,15

· · ·
One could apply the same methods to the construction of several other
tables, such as those of the 90th & its height, those of refractions &c., but
what we have said is more than sufficient. I therefore suppress what I have
done for those tables, & end here this memoir, which without any doubt is
too long.

12 DL gives various methods for checking and correcting the error in this case.
13 The value of the true anomaly calculated by the Runge–Kutta method.
14 We see that little has changed in the world of numerical analysis in 200 years.
15 In XI, DL extends the method to calculating log r. In XII, he applies his methods

to Jupiter, Saturn, and Herschel (Uranus). In XIII, he relates the true anomaly, true
longitude, and aphelion. In XIV, for the parabolic orbits of comets, he studies du =
cos4 1

2
u, for which one M. Cagnoli had foolishly proposed to use cos4 1

2
(u + du). DL

considers instead cos2( 1

2
u) cos2 1

2
(u + du), together with an Euler estimate of du, but

concludes that ‘the work will still be considerable; it is greatly shortened by using second
differences. . . ddu = −2 cos7 1

2
u sin 1

2
u.’ XV–XVIII consider various other trigonometric

approximations. The article then concludes.


